Home
Class 12
MATHS
Solve sqrt(1+p^(2))=tan(px-y). when p=dy...

Solve `sqrt(1+p^(2))=tan(px-y).` when `p=dy/dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve (p-x)(p-e^(x))(p-1//y)=0, where P=(dy)/(dx).

Solve y^(2)log y=pxy+p^(2) . where p=dy/dx

If sqrt(1-x^(2) ) + sqrt(1-y^(2)) = x-y , then dy/dx =

solve y=px+(p)/(sqrt(1+p^(2).

If y = (1+x^(2)) tan^(-1) x -x , then dy/dx =

If sqrt(1 -x^2) + sqrt(1 - y^2) = a(x - y) prove that (dy)/(dx) = (sqrt(1 - y^2))/(sqrt(1-x^2)) .

If y = e^(log sqrt(1+tan^(2)x) , then dy/dx =

If y = tan^(-1) ((sqrt(1+x^(2)) -sqrt(1-x^(2)))/(sqrt(1+x^(2)) + sqrt(1-x^(2)))) then dy/dx =

Solve y=2px-p^(2) where p= dy/dx