Home
Class 12
MATHS
The function f(x) satisfying the equati...

The function `f(x) ` satisfying the equation `(f (x))^2 + 4 f'(x) f(x) + (f'(x))^2 = 0`

A

`f(x)=C.e^((2-sqrt3)x`

B

`f(x)=C.e^((2+sqrt3)x`

C

`f(x)=C.e^((sqrt3-2)x`

D

`f(x)=C.e^(-(2+sqrt3)x`

Text Solution

Verified by Experts

The correct Answer is:
C, D
Promotional Banner

Similar Questions

Explore conceptually related problems

A real valued function f(x) satisfies the functional equation : f(x-y)=f(x)f(y)-f(a-x)f(a+y) , where a is given constant and f(0)=1.f(2a-x) is equal to :

A real valued functio f(x) satisfies the functional equation f(x-y)=f(y)-f(a-x)f(a+y) where a is given constant and f(0) =1 f(2a-x) is equal to

The function f(x) is defined by f(x) = (x+2)e^(-x) is

There exists a function f(x) satisfying f(0)=1, f'(0)=-1, f(x) gt 0 , for all x, then :

Which of the following function from Z to itself are bijections? f(x)=x^3 (b) f(x)=x+2 f(x)=2x+1 (d) f(x)=x^2+x

If the function f(x) satisfies lim_(x rarr1)(f(x)-2)/(x^(2)-1)= pi , then lim_(x rarr 1)f(x)=

If the fucntion f (x ) satisfies underset( x to 1) (lim ) . (f (x ) -2)/( x^(2)-1)=pi

For x in R , the functions f(x) satisfies 2f(x)+f(1-x)=x^(2) . The value of f(4) is equal to

If f(x) = 1+x^4 , then f(x).f((1)/(x))=