Home
Class 12
MATHS
With usual notations, if in a triangleAB...

With usual notations, if in a `triangleABC (b+c)/(11)=(c+a)/(12)=(a+b)/(13)` , then prove that: `(cosA)/7=(cosB)/(19)=(cosC)/(25)`

Text Solution

Verified by Experts

The correct Answer is:
`(cos A)/(7) =(cos B)/(19)=(cos C)/(25)`
Promotional Banner

Similar Questions

Explore conceptually related problems

In a DeltaABCV if (b+c)/(11)=(c+a)/(12)=(a+b)/(13) then cos C=

If in DeltaABC , (b+c)/(11)=(c+a)/(12)=(a+b)/(13) , then cosA equals :

If (a)/(cosA)=(b)/(cosB)=(c )/(cosC) , then triangle is

If a=5, b=13, c=12 in a triangle A B C, then tan ((B)/(4))=

If A=(0,1)B=(1,0),C=(1,2),D=(2,1) , prove that vec (A B)= vec (C D)

If the roots of the equations (b-c) x^(2) + (c-a) x+( a-b) =0 are equal , then prove that 2b=a+c

If in DeltaABC , (cosA)/(7)=(cosB)/(19)=(cosC)/(25)=k , then : |{:(-(1)/(k),25,19),(25,-(1)/(k),7),(19,7,-(1)/(k)):}| equals

If a,b,c are in HP, then prove that (a+b)/(2a-b)+(c+b)/(2c-b)gt4 .

(cosA)/a+(cosB)/b+(cosC)/c=(a^(2)+b^(2)+c^(2))/(2abc)

(cosA)/a+(cosB)/b+(cosC)/c=(a^(2)+b^(2)+c^(2))/(2abc)