Home
Class 12
MATHS
Prove that: sec^(2) (tan^(-1)2) + "cosec...

Prove that: `sec^(2) (tan^(-1)2) + "cosec"^(2)(cot^(-1)3)=15`.

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Are these identities true only for 0^(@) le A le 90 ^(@) ? If not ,for which other values of A they are true ? sec^(2) A-tan ^(2) A =1 " " cosec ^(2) A - cot ^(2) A=1

Prove that cosec^(2) theta + sec^(2) theta = cosec^(2) theta sec^(2) theta .

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)[(3x=x^(3))/(1-3x^(2))],|x|lt1/(sqrt(3))

The value of tan^(2) (sec^(-1) 2) + cot^2 ("cosec"^(-1) 3) is :

Prove that tan^(-1)x+tan^(-1)((2x)/(1-x^(2)))=tan^(-1)((3x-x^(3))/(1-3x^(2)))|x|lt1/(sqrt(3))

Prove that (tan^(3) theta)/(1 + tan^(2) theta) + (cot^(3) theta)/(1+ cot^(2) theta) = sec theta cosec theta - 2 sin theta cos theta

Prove that (sec theta + tan theta)^(2) = (cosec theta +1)/(cosec theta -1) .