Home
Class 12
MATHS
Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4...

Prove that : `tan^(-1)2+tan^(-1)3=(3pi)/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : tan^(-1)2x+tan^(-1)3x= (pi)/(4)

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4

Solve tan^(-1)2x+tan^(-1)3x=(pi)/4

Prove that 2tan^(-1)(1/2)-tan^(-1)(1/4)=tan^(-1)(13/16)

Prove that: tan^(-1)(1/7)+tan^(-1)(1/(13))=tan^(-1)(2/9)

Prove that tan ^(-1). 3/4+ tan^(-1) . 3/5 - tan^(-1) . 8/19 = pi/4

Prove that : 2tan^(-1)((3)/(4))-tan^(-1)((17)/(31))=(pi)/(4) .

Prove that tan^(-1)1+tan^(-1)2+tan^(-1)3 =pi

Prove that tan^(-1)x+tan^(-1)((2x)/(1-x^(2)))=tan^(-1)((3x-x^(3))/(1-3x^(2)))|x|lt1/(sqrt(3))