Home
Class 12
MATHS
Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)...

Prove that : `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2tan^(-1)(1/2)-tan^(-1)(1/4)=tan^(-1)(13/16)

Prove that: tan^(-1)(1/7)+tan^(-1)(1/(13))=tan^(-1)(2/9)

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Show that 2tan^(-1)(1/2) + tan^(-1)(1/7) = tan^(-1)(31/17)

Prove that tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=(pi)/4

Prove that tan^(- 1)(1/3)+tan^(- 1)(1/7)+tan^(- 1)(1/13)+..........+tan^-1 (1/(n^2+n+1))+......oo = pi/4

Prove that 2tan^(-1)((1)/(2))+ tan^(-1)((1)/(7))= tan^(-1)((31)/(17))

Prove that 2"tan"^(-1)1/2+"tan"^(-1)1/7="tan"^(-1)31/17

Prove that 2sin^(-1)(3/5)=tan^(-1)((24)/1)

Prove that tan^(-1)1+tan^(-1)2+tan^(-1)3 =pi