Home
Class 12
MATHS
Prove that tan ^(-1). 3/4+ tan^(-1) ....

Prove that
`tan ^(-1). 3/4+ tan^(-1) . 3/5 - tan^(-1) . 8/19 = pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4

Prove that 2tan^(-1)(1/2)-tan^(-1)(1/4)=tan^(-1)(13/16)

Prove that 2"tan"^(-1)1/2+"tan"^(-1)1/7="tan"^(-1)31/17

Prove that: tan^(-1)(1/7)+tan^(-1)(1/(13))=tan^(-1)(2/9)

Prove that tan^(-1)1+tan^(-1)2+tan^(-1)3 =pi

Prove that 2sin^(-1)(3/5)=tan^(-1)((24)/1)

Prove that tan^(-1) ""(2)/(11) + tan ^(-1) ""(7)/(24) = tan^(-1)"" (1)/(2)

If tan^(-1) x + tan^(-1) y =(pi)/(4) then...

If tan ^(-1) x-tan ^(-1) y=-(pi)/(4) then