Home
Class 12
MATHS
Prove that tan^(-1)1+tan^(-1)2+tan^(-1)3...

Prove that `tan^(-1)1+tan^(-1)2+tan^(-1)3 =pi`

Text Solution

Verified by Experts

The correct Answer is:
`pi`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=(pi)/4

Prove that tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy)) when xylt1

Prove that tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)),xygt-1

Prove that 2tan^(-1)(1/2)-tan^(-1)(1/4)=tan^(-1)(13/16)

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4

Prove that tan^(- 1)(1/3)+tan^(- 1)(1/7)+tan^(- 1)(1/13)+..........+tan^-1 (1/(n^2+n+1))+......oo = pi/4

Prove that tan^(-1) ""(2)/(11) + tan ^(-1) ""(7)/(24) = tan^(-1)"" (1)/(2)

Prove that 2tan^(-1)((1)/(2))+ tan^(-1)((1)/(7))= tan^(-1)((31)/(17))

Prove that 2"tan"^(-1)1/2+"tan"^(-1)1/7="tan"^(-1)31/17