Home
Class 12
MATHS
If sum(i=1)^(2n) sin^(-1) xi=npi, then s...

If `sum_(i=1)^(2n) sin^(-1) x_i=npi`, then `sum_(i=1)^(2n) x_i` equals :

Text Solution

Verified by Experts

The correct Answer is:
`2n`
Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(2n) sin^(-1) x_i =npi , then sum_(i=1)^(2n) x_i is equal to :

If sum_(i=1)^(2 n) cos ^(-1) x_(i)=0, then sum_(i=1)^(2 pi) x_(i)=

If sum_(r=1)^(n) t_(r ) = sum_(k=1)^(n) sum_(j=1)^(k) sum_(i=1)^(j) 2 , then sum_(r=1)^(n) (1)/( t_(r )) equals :

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .

Let x_(1),x_(2),x_(3), . . .,x_(k) be the divisors of positive integer ' n ' (including 1 and x ). If x_(1)+x_(2)+ . . .+x_(k)=75 , then sum_(i=1)^(k)(1)/(x_(i)) is equal to:

sum_(i=1)^(n) sum_(j=1)^(i)sum_(k=1)^(j) 1 equals :

If 1+x^(2)=sqrt(3)x , then sum_(n=1)^(24)(x^(n)-(1)/(x^(n)))^(2) equals

The value of the sume sum_(n=1)^(13) ( i^(n) + i^(n+1)) , where i = sqrt( -1) , equals :

If f(n)=prod_(i=2)^(n-1)log_i(i+1) , the value of sum_(k=1)^100f(2^k) equals