Home
Class 12
MATHS
The value of sin [tan ^(-1)((1-x^(2))/(2...

The value of `sin [tan ^(-1)((1-x^(2))/(2 x))+cos ^(-1)((1-x^(2))/(1+x^(2)))]=`

A

1

B

0

C

`-1`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The derivative of sin^(-1) ((2x)/(1+x^(2))) w.r.t sin^(-1) ((1-x^(2))/(1+x^(2))) is

Write the value of x for which 2tan^(-1)x = cos^(-1)[(1-x^(2))/(1+x^(2))] holds:

"tan"1/2["sin"^(-1)(2x)/(1+x^(2))+"cos"^(-1)(1-y^(2))/(1+y^(2))]

The value of int_0^(1) tan^(-1) ((2x-1)/(1+x-x^(2))) dx is

The derivative of tan^(-1) ((2x)/(1-x^(2))) w.r.t sin^(-1) ((2x)/(1+x^(2))) is

If cos^(-1) ((1-a^(2))/(1+a^(2)))- cos^(-1) ((1-b^(2))/(1+b^(2))) = 2 tan^(-1) x , then x is

3 sin ^(-1)((2 x)/(1+x^(2)))-4 cos ^(-1)((1-x^(2))/(1+x^(2))) +2 tan ^(-1)((2 x)/(1-x^(2)))=(pi)/(3) ( then ) x=

Write the set of the value of x for which 2tan^(-1)x="cos"^(-1)(1-x^(2))/(1+x^(2)) holds.