Home
Class 12
MATHS
The value of underset(|x| rarr oo)("lim"...

The value of `underset(|x| rarr oo)("lim") cos (tan^(-1) (sin (tan^(-1) x)))` is equal to

A

`-1`

B

`sqrt2`

C

`- 1/sqrt2`

D

`1/sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

cos[tan^(-1) {sin(cot^(-1) x)}] =

The value of underset(x rarr 0)(lim) ((e^(x)-1)/(x)) is

cos [ tan^(-1){sin (cot^(-1)x)}] =

sin cot^(-1) tan cos^(-1) x is equal to :

lim_(x-1)(tan(x^(2)-1))/(x-1) is equal to

Evaluate : underset (x rarr 0)lim (3x-tan 4x)/(x+sin x) .

The value of underset(x rarr0)limsqrt((1)/(2)(1-cos2x))/(x) is

The value of lim_(x rarr oo) (sinx)/(x) is

The value of sin (2 tan ^(-1)(.75)) is equal to

underset(x rarr0)(lim) (log_(e) (1+x))/(3^(x)-1)=