Home
Class 12
MATHS
Let u = cot^(-1) sqrt(cos 2 theta) - ...

Let `u = cot^(-1) sqrt(cos 2 theta) - tan^(-1) sqrt( cos 2 theta)` , then the value of `sin u` is

A

`cos 2 theta `

B

`sin 2 theta`

C

`tan^(2) theta`

D

`cot^(2) theta`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

cot^(1) sqrt(cos alpha) -tan^(-1) sqrt(cos alpha)= x then sin x

int (cos theta - sin theta)/(sqrt(sin 2 theta) ) d theta=

If sin theta+cos theta=1 then the value of sin 2 theta is equal to

If cos 2 theta =(sqrt(2)+1)( cos theta -(1)/(sqrt(2))) , then the value of theta is

(1+cos 2 theta)/(sin 2 theta)=cot theta

int (sin theta + cos theta)/(sqrt(sin 2 theta) ) d theta =

If sin theta =cos theta ,then the value of 2tan theta+cos^(2)theta is:

If sqrt(3) "tan" theta = 1 "and " theta is acute find the value of sin 3theta "cos" 2theta .

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .