Home
Class 12
MATHS
Let f(x) =1+2sin(e^x/(e^x+1)) x ge 0 the...

Let `f(x) =1+2sin(e^x/(e^x+1))` `x ge 0` then `f^(-1)(x) ` is equal to (assuming f is bijectve)

A

`log ((sin^(-1)((x-1)/2))/(1 - sin^(-1) (( x-1)/2))) `

B

`log ((sin (( x-1)/2))/(1- sin((x-1)/2)))`

C

`e^((sin^(-1).((x-1)/2))/(1-sin^(-1)((x-1)/2)))`

D

`e^((sin((x-1)/2))/(1-sin ((x-1)/2)))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = x tan^(-1)x , then f^(')(1) is equal to

f(x) = ((e^(2x)-1)/(e^(2x)+1)) is

If f(x) = {(1/(1+e^(1/x)), x ne 0),(0, x= 0):} then f(x) is

Let, f(x) = int e^(x) (x-1)(x-2) dx , then f(x) decreases in the interval

If int (e^(x)-1)/(e^(x)+1) dx = f(x) + c then f(x) =

If f(x)=sin^(-1)[2^(x+1)/(1+4^(x))]," then "f^(1)(0)=

Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)), x ne 0, then f(x)=

Let f(x)=x^(3)-(1)/(x^3) , then f(x)+f((1)/(x)) is equal to :

Let f(x) = x - 1/x , then f' (-1) is

If f(x) = sin^(-1)[(2^(x+1))/(1+4^(x))] then f' (0) =