Home
Class 12
MATHS
If "tan"^(-1) (sqrt(1+x^2)-1)/x=4 , then...

If `"tan"^(-1) (sqrt(1+x^2)-1)/x=4` , then x equals :

A

`x = tan 2^(@)`

B

`x = tan 4^(@)`

C

`x = tan ( 1//4)^(@)`

D

`x = tan 8^(@)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

"tan"^(-1)1/(sqrt(x^(2)-1))|x|gt1

The derivative of tan^(-1) [(sqrt(1 + x^(2)) - 1)/(x)] with respect to tan^(-1) x is

If int (sinx)/(sin^(2)x+4cos^(2)x)dx=-(1)/(sqrt(3))tan^(-1)((sqrt(3))/f(x))+c ,then f(x) equals :

If y = tan^(-1)((sqrt(1 + x^2)-1)/(x)) , prove that (dx)/(dy) = 1/(2(1 + x^2))

Write the following in the simplest form: "tan"^(-1)(sqrt(1+x^(2))-1)/x,x!=0

The value of differentiation of tan^(-1)x with respect to tan^(-1) ((sqrt(1+ x^(2)) -1)/(x)) is k . Then k//2 is

Write the function tan^(-1)((sqrt(1+x^(2))-1)/x)x ne 0 , in the simplest form.