Home
Class 12
MATHS
For any real number x ge 1, the express...

For any real number ` x ge 1`, the expression
`sec^(2) ( tan^(-1)x) - tan^(2) ( sec^(-1) x)` is equal to

A

1

B

2

C

`2x^(2)`

D

`2sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

sec ^(2)(tan ^(-1) 2)+cosec^(2)(cot ^(-1) 3)=

sec ^(2)(tan ^(-1) 2)+cosec^(2)(cot ^(-1) 3)=

lim_(x-1)(tan(x^(2)-1))/(x-1) is equal to

int tan^(6)x. sec^(2)x dx =

int (tan^(-1)x)^(3)/(1+x^(2)) dx is equal to

The value of fe^(x)(x^(2)tan^(-1) x + tan^(-1) x + 1)/(x^(2) + 1) dx is equal to

sec^(2)2x=1-tan2x

Find the genral solution of sec^(2) 2x=1 -tan 2x

The value of the integral int e^(tan^(-1) x) * ((1 + x + x^(2)))/((1 + x^(2))) dx is equal to