Home
Class 12
MATHS
(1)/(1!(n-1)!)+(1)/(3!(n-3)!)+(1)/(5!(n-...

`(1)/(1!(n-1)!)+(1)/(3!(n-3)!)+(1)/(5!(n-5)!)+` . . . Equals:

Text Solution

Verified by Experts

`because 1 ! = 1 `
` therefore ` The given series can be written as
`(1)/(n!)(1)/((n-1)!1!) + (1!)/((n-3)!3!) + (1)/((n-5)!5!) + ...` …(i)
` because ` Sum of values of each terms in factorial are equal
.` (n-1) + 1 = (n-3) + 3= (n-5) + 5 = … = n `
From Eq. (i)
`(1)/(n!)[(1)/((n-1)!1!) + (1!)/((n-3)!3!) + (1)/((n-5)!5!)+ ...]`
` = (1)/(n!) ( ""^(n)C_(1) + ""^(n)C_(3) + ""^(n)C_(3) + ""^(n)C_(5) + ...) = (2^(n-1))/(n!)` .
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo) ((1)/(1.2) + (1)/(2.3) + (1)/(3.4) +…..+ (1)/(n(n+1))) is :

lim_(n rarr oo) [(1)/(1-n^(4))+(8)/(1-n^(4))+…...+(n^(3))/(1-n^(4))] equals :

Prove that by using the principle of mathematical induction for all n in N : 1+ (1)/((1+2))+ (1)/((1+2+3))+ .....+(1)/((1+2+3+n))= (2n)/(n+1)

Prove that by using the principle of mathematical induction for all n in N : (1)/(3.5)+ (1)/(5.7)+ (1)/(7.9)+ ....+(1)/((2n+1)(2n+3))= (n)/(3(2n+3))

(1)/(1 . 3)+(1)/(3 . 5)+(1) /(5 . 7)+.. to n terms =

Let a sequence {a_(n)} be defined by a_(n)=(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+"...."+(1)/(3n) . Then:

The sum of : (x+ 2)^(n-1) + ( x+2) ^(n-2) (x+1) + ( x+2)^(n-3) (x+1)^(2) + "......." + ( x+ 1)^(n-1) equals :

Prove that by using the principle of mathematical induction for all n in N : (1)/(2.5)+ (1)/(5.8) + (1)/(8.11)+ ...+(1)/((3n-1)(3n+2))= (n)/(6n+4)

Prove that by using the principle of mathematical induction for all n in N : (1)/(1.2.3)+ (1)/(2.3.4)+ (1)/(3.4.5)+....+ (1)/(n(n+1)(n+2))= (n(n+3))/(4(n+1)(n+2))