Home
Class 12
MATHS
If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+ . . ....

If `(1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+ . . .+C_(n)x^(n)`, then the value of :
`C_(1)+2C_(2)+3C_(3)+ . . .+nC_(n) ` is:

Text Solution

Verified by Experts

Here , last term of `C_(1) + 2C_(2) + 3C_(3) + …+ nC_(n) "is " nC_(n) ` i.e., n
and n ` n= n *1 + 0 "or" n)n(1`
`{:(underline(n)),(underline(0)):}`
Here , q = 1 and r = 0
Then , the given series is
`(1 + x)^(n) = C_(0) + C_(1)x+C_(2) x^(2) + C_(3) x^(3) + ...+ C_(n) x^(n)`
Diiferentiating both sides w.r.t.x,we get
`n(1 + x)^(n-1) = 0+C_(1) + 2C_(2) + 3C_(3) x^(3) + ...+ nC_(n) x^(n-1)`
Putting x= 1 , we get
` n*2^(n-1) = C_(1) + 2C_(2) + 3C_(3) +...+ nC_(n)`
I . Aliter
` C_(1) + 2C_(2) + 3C_(3) + ...+ nC_(n)`
`= n+ 2.(n(n-1))/(1*2) + 3* (n(n-1)(n-2))/(1*2*3) + ...+ n*1`
`= n{1 + (n-1) + ((n-1)(n-2))/(1*2) + ...+ 1}`
Let n- 1 = N , then
LHS `= (1 + N) { 1+ N + (N(N -1))/(1*2) + ... + 1}`
` = (1 + N){1 +""^(N)C_(1) + ""^(N)C_(2) + ...+ ""^(N)C_(N) `
` = (1 + N)2^(N) = n*2^(2-1)` = RHS
II . Aliter
LHS = `C_(1) + 2C_(2) + 3 C_(3)+ ...+ nC_(n) = sum_(r=1)^(n) r* ""^(n)C_(r)`
`= n sum_(r=1)^(n)r.(n)/(r). ""^(n-1)C_(r-1)" "[ because ""^(n)C_(r)= (n)/(r). ""^(n-1)C_(r-1)]`
` n sum_(r=1)^(n) ""^(n-1)C_(r-1)`
` = n (""^(n-1)C_(0) + ""^(n+1)C_(1) + ""^(n-1)C_(2) + ...+ ""^(n-1)C_(n-2) + ...+ ""^(n-1)C_(n-1))`
`n*n^(n-1)` = RHS
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of C_(1)+4C_(2)+7C_(3)+ . . .+(3n-2)C_(n) is

The value of C_(0)+3C_(1)+5C_(2)+7C_(3)+ . . .+(2n+1)C_(n) is:

If (1+x)^(n) = C_(0)+C_(1).x+C_(2). x^(2)+..+C_(n). x^(n) then C_(0)+2. C_(1)+3. C_(2)+..+(n+1). C_(n) =

If (1+x)^(n)= C_(0)+C_(1).x+C_(2). x^(2)+.. . C_(n). x^(n) in the usual notation then C_(0)^(2)+C_(1)^(2)+C_(2)^(2)+.. .+C_(n)^(2) =

If the value of C_(0)+2C_(1)+3C_(2)+ . . .+(n+1)C_(n)=576 , then n is

If .^(20)C_(n+1) = ^ (n) C_(16) , then the value of n is

If the value of C_(0) + 2C_(1) + 3C_(2) + ……. + (n+1) C_(n) =576 then n is :

C_(0)-C_(1)+C_(2)-C_(3)+ . . .+(-1)^(n)C_(n) is equal to

If n C_(1)+2. n C_(2)+..n. n C_(n) = 2 n^(2) , then n =