Home
Class 12
MATHS
Prove by induction that {prod(r=1)^(n)f(...

Prove by induction that `{prod_(r=1)^(n)f_(r)(x)}'=sum_(i=1)^(n){f_1(x)f_2(x)....f_(i)'(x)....f_(n)(x)}`,
where dash denotes derivative with respect to `x`.

A

`S_(5)(pi/2) =16`

B

`S_(7)((-pi)/2)=64`

C

`S_(50)(pi) = 0`

D

`S_(51)(-pi)=-2^(50`

Text Solution

Verified by Experts

The correct Answer is:
a, b, c

`therefore S_(n) (x) = sum_(k=0)^(n) ""^(n) C_(k) sin (kx) cos ((n-k)x)` ...(i)
Replace k by `n-k` in Eq, (i), then
` S_(n) (x) = sum_(k=0)^(n) ""^(n) C_(n-k) sin((n-k)x)cos (ks)`
or ` S_(n) (x) = sum_(k=0)^(n) ""^(n) C_(k) sin((n-k)x)cos (ks)` ...(ii)
On adding Eqs. (i) and (ii), we get `2S_(n) (x) = sum_(k=0)^(n) ""^(n) C_(k) cdot sin((nx)=2^(n) cdot sin(ks)`
`rArr S_(n)(x) = 2^(n-1) cdot sin (nx)`
`therefore S_(5)(pi/2) = 2^(4) cdot sin ((5pi)/2)=16,`
`S_(7)(-pi/2)=2^(6)cdot sin (-(7pi)/2) = 2^(6) xx - 1 xx-1 = 64`
`S_(50)(pi)=2^(49) cdot sin (50pi ) = 0`
and `S_(51)(-pi)=2^(50) cdot sin (-51pi ) = 0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(1)/(1-x) then f[f{f(x)}]=

If f(x) = (a-x^n)^1/n, a gt 0 , n is a postive integer then f[f(x)]=

If f(x) = 1/(1-x), then the derivative of the composition function f[f{f(x)}] is equal to

Let f(x) be a polynomial function such that f(x). f(1/x) = f(x) + f(1/x). If f(4) = 65, then f^(')(x) =

If f(x) = 1+x^4 , then f(x).f((1)/(x))=

If f(x)=(a-x^(n))^(1 / n) , then f(f(x)) =

Let f_(k)(x)=(1)/(k)(sin^(k)x+cos^(k)x) where x in R and kge1 then f_(4)(x)-f_(6)(x) equals