Home
Class 12
MATHS
Let (1+x^(2))^(2)(1+x)^(n) = sum(k=0)^(n...

Let `(1+x^(2))^(2)(1+x)^(n) = sum_(k=0)^(n+4) a_(k) x^(k) `. If `a_(1) , a_(2) , a_(3)` are in A.P., then n=

Text Solution

Verified by Experts

We have,
`(1+ x^(2))^(2) (1 + x)^(n) = (1 + 2x^(2) + x^(4))`
` xx(""^(n)C_(0) + ""^(n)C_(1)x + ""^(n)C_(2) x^(2) + ""^(n)C_(3) x^(3) + …)`
` = a_(0) + a_(1) x + a_(2) x^(2) + a_(3) x^(3) + …` [say]
Now , comparing the coefficients of ` x,x^(2) "and " x^(3) ` , we get
` a_(1) = ""^(n)C_(1),A_(2) = 2*""^(n)C_(0) + ""^(n)C_(2),A_(3) = 2 * ""^(n)C_(1) + ""^(n)C_(3)` ....(i)
In ` a_(1) n ge , "in" a_(2), n ge 2 " and in " a_(3) , n ge 3 `
` therefore n ge 3 ` ...(ii)
From Eq.(i) ,
`a_(1) = n,a_(2) = 2+ (n(n-1))/(1*2) = (n^(2) -n +4)/(2)`
and `a_(3) = 2n+ (n(n-1)(n-2))/(1*2*3) =(n^(3) - 3n^(2) + 14n)/(6)`
Since , ` a_(1) , a_(2) ,a_(3) ` are in AP .ltbr. Therefore , ` 2a_(2) = a_(1) + a_(3)`
` rArr n^(2) - n + 4 = n+ (n^(3) - 3n^(2) + 14n)/(6)`
` rArr n^(3) - 9n^(2) + 26n - 24= 0 `
or `(n-2)(n-3)(n-4) = 0 `
` therefore n = 2,3,4 `
Hence , n = 3,4 [from Eq.(ii)]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+2 x+x^(2))^(n)=sum_(r=0)^(2 n) a_(r) x^(r) , then a_(r) =

If (1+x+x^(2))^(n) = sum_(r=0)^(2 n) a_(r). x^(r) then a_(1)-2 a_(2)+3 a_(3)-..-2 n. a_(2n) =

If (n) is an odd positive integer and (1+x+x^(2)+x^(3))^(n) = sum_(r=0)^(3 n) a_(r) x^(r) then, a_(0)-a_(1)+a_(2)-a_(3)+.. .-a_(3 n) =

Let n in N . If (1+x)^(n)=a_(0)+a_(1)x+a_(x)x^(2)+ . . . .+a_(n) x^(n) and a_(n-3),a_(n-2),a_(n-2),a_(n-1) are in A.P. then:

If (1 +x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + … + a_(2n) x^(2n) , then a_(0) + a_(2) + a_(4) + … + a_(2n) equals

If (1+x-2 x^(2))^(6)=1+a_(1) x+a_(z) x^(2)+l .. .+a_(12) x^(12) then a_(2)+a_(4)+..+a_(12) =

If ( a_(2)a_(3))/( a_(1) a_(4)) = ( a_(2) + a_(3))/( a_(1) + a_(4) ) = 3 ((a_(2) - a_(3))/(a_(1) - a_(4))) , then : a_(1) , a_(2) , a_(3) , a_(4) are in :

If (1+x+x^(2))^(n) = a_(0)+a_(1) x+a_(2) x^(2)+.. .+a_(2 n) x^(2 n) then the value of a_(0)+a_(3)+a_(6)+.. . . is

For natural number m, n if (1-y)^(m)(1+y)^(n)=1+a_(1)y+a_(2)y^(2)+ . . . . ., and a_(1)=a_(2)=10 , then (m,n) is

A person is to count 4500 currency notes. Let a_(n) denote the number of notes he counts in the nth minute. If a_(1) = a_(2) = "………" = a_(10) = 150 and a_(11) , a_(12),"……….." are in an A.P. with common difference -2, then the time taken by him to count at notes is :