Home
Class 12
MATHS
The equation to the straight line passin...

The equation to the straight line passing through the point `(a "cos"^(3) theta, a "sin"^(3) theta)` and perpendicular to the line `x "sec" theta + y"cosec" theta = a` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of the point (a cos ^(3) theta, a sin ^(3) theta) is

The locus of the point x=a cos theta, y=b sin theta is

cos theta . Cosec theta = cot theta

The locus of the point x=a+b cos theta y=b+a sin theta is

x = a cos theta, y = b sin theta .

Show that cot theta +tan theta =sec theta cosec theta

If x=a cos ^(3) theta and y = a sin^(3) theta then (dy)/( dx) =

Find the slope of the normal to the curve x=a cos^(3) theta,y=a sin^(3) theta at theta=(pi)/(4) .

Prove that: sin theta (1 + tan theta) + cos theta (1+ cot theta) = sec theta + cosec theta .

Prove that (cos^(2) theta)/(1-tan theta)+(sin^(3) theta)/(sin theta - cos theta) =1 + sin theta cos theta .