Home
Class 12
MATHS
If p and p' be perpendiculars from the o...

If p and p' be perpendiculars from the origin upon the straight lines `x sec theta+y"cosec"theta=a and x cos theta-y sin theta=a cos 2theta`, then the value of the expression `4p^(2)+p'^(2)` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

x = a cos theta, y = b sin theta .

If acos theta+b sin theta=p and a sin theta-b cos theta=q then

If sec theta + tan theta = p , find the value of cosec theta .

x = cos theta - cos 2 theta, y = sin theta - sin 2 theta . then find dy/dx

If p and q are the lengths of perpendicular from the origin to the lines x cos theta-y sin theta=k cos 2theta and x sec theta+y "cosec" theta=k respectively, prove that p^(2)+4q^(2)=k^(2) .

x=sec theta-tan theta, y=cosec theta+cot theta, then

If x = theta cos theta + sin theta, y = cos theta- theta sin theta , then dy/dx at theta = pi/2

(sin^(2) theta)/(1-cos theta)-(cos^(2) theta)/(1-sin theta)=cos theta-sin theta