Home
Class 12
MATHS
Prove that the line lx+my+n=0 toches the...

Prove that the line lx+my+n=0 toches the circle `(x-a)^(2)+(y-b)^(2)=r^(2)` if `(al+bm+n)^(2)=r^(2)(l^(2)+m^(2))`

Text Solution

Verified by Experts

The correct Answer is:
`=>(la+mb+n)^(2)=r^(2)(l^(2)+m^(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

The line 3x-2y=k meets the circle x^(2)+y^(2)=4r^(2) at only one point if k^(2)=

If the line lx+my+n=0 touches the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 . Then

If the length of the tangent from any point on the circle (x-3)^(2)+(y+2)^(2)=5r^(2) to the circle (x-3)^(2)+(y+2)^(2)=r^(2) is 4 units, then the area between the two circles in sq. units is

If the line y=m x is outside the circle x^(2)+y^(2)-20 y+90=0 then

The equation of the line common to the pair of lines (p^(2)-q^(2)) x^(2)+(q^(2)-r^(2)) x y+(r^(2)-p^(2)) y^(2)=0 and (l-m) x^(2)+(m-n) x y+(n-l) y^(2)=0 is

The line L x+m y+n=0 is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 , if

If the line l x+m y+n=0 touches the parabola y^2=4a x , prove that ln=a m^2

Prove that the locus of the centre of the circle (1)/(2)(x^(2)+y^(2))+xcostheta+ysintheta-4=0 is x^(2)+y^(2)=1

If lx+my=1 touches the circle x^(2)+y^(2)=a^(2) , prove that the point (l,m) lies on the circle x^(2)+y^(2)=a^(-2)

The st line lx+my+n=0 will be a tangent to the parabola y^(2)=4bx if