Home
Class 12
MATHS
Prove that the circle x^(2) + y^(2) + 2a...

Prove that the circle `x^(2) + y^(2) + 2ax + c^(2) = 0 and x^(2) + y^(2) + 2by + c^(2) = 0` touch each other if
`(1)/(a^(2)) + (1)/(b^(2)) = (1)/(c^(2))` .

Text Solution

Verified by Experts

The correct Answer is:
`c^(2)(a^(2)+b^(2))=a^(2)b^(2)or(1)/(a^(2))+(1)/(b^(2))=(1)/(c^(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the circles x^(2) +y^(2) - 4x + 6y + 8 = 0 and x^(2) + y^(2) - 10x - 6y + 14 = 0 touch at the point (3,-1)

The circleS x^(2)+y^(2)+2 a x+c^2=0 and x^(2)+y^(2)+2 b y+c^2=0 touch if

The circles x^(2)+y^(2)+6 x+k=0 and x^(2)+y^(2)+8 y-20=0 touch each other internally. The value of k is

For the circles x^(2) + y^(2) - 2x + 3y + k = 0 and x^(2) + y^(2) + 8x - 6y - 7 = 0 to cut each other orthogonally the value of k must be

Given that the circle x^(2)+y^(2)+2 x-4 y+4=0 and x^(2)+y^(2)-2 x-4 y-4=0 touch each other the equation of the common tangtnt is

The two circles : x^2+y^2 =ax and x^2+y^2=c^2 (c > 0) touch each other if :

The circleS x^(2)+y^(2)-10 x+16=0 and x^(2)+y^(2)=r^(2) intersect each other in distinct points, if

For the circles x^2 + y^2 - 2x + 3y + k = 0 and x^2 + y^2 + 8x - 6y - 7 = 0 to cut each other orthogonally the value of k must be

If the radical axis of the circles x^(2)+y^(2)+2gx + 2fy + c = 0 and 2x^(2) + 2y^(2) + 3x + 8y + 2c =0 touches the circle x^(2)+ y^(2)+2x+2y + 1 = 0, then

If the circles x^(2)+y^(2)+2gx+2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch each other, then