Home
Class 12
MATHS
The circles whose equations are : x^2+y^...

The circles whose equations are : `x^2+y^2+c^2=2ax` and `x^2+y^2+c^2-2by=0` will touch each other externally if:

A

`(1)/(b^(2))+(1)/(c^(2))+(1)/(a^(2))`

B

`(1)/(c^(2))+(1)/(a^(2))=(1)/(b^(2))`

C

`(1)/(a^(2))+(1)/(b^(2))=(1)/(c^(2))`

D

`(1)/(b^(2))+(1)/(c^(2))+(2)/(a^(2))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The two circles : x^2+y^2 =ax and x^2+y^2=c^2 (c > 0) touch each other if :

If the circles x^(2)+y^(2)+2gx+2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch each other, then

The circles x^(2)+y^(2)+6 x+k=0 and x^(2)+y^(2)+8 y-20=0 touch each other internally. The value of k is

The circles x^2+y^2-25=0 and 3(x^2+y^2)-30x - 40y + 175=0 touch each other at :

The circleS x^(2)+y^(2)+2 a x+c^2=0 and x^(2)+y^(2)+2 b y+c^2=0 touch if

If one of the circles: x^2+y^2 +2ax+c=0 and x^2+y^2 + 2bx+c=0 lies within the other , then :

Circles x^2+y^2-2x-4y=0 and x^2+y^2-8y-4=0

For the two circles: x^2+y^2 =16 and x^2+y^2-2y =0 there :

If the circles x^(2)+y^(2)=9andx^(2)+y^(2)+2alphax+2y+1=0 touch each other internally , then alpha =

The circles x^2+y^2=r^2 and x^2+y^2-10x+16=0 intersect each other in distinct points if: