Home
Class 12
MATHS
If the line y=mx + sqrt(a^2 m^2 - b^2) t...

If the line `y=mx + sqrt(a^2 m^2 - b^2)` touches the hyperbola `x^2/a^2 - y^2/b^2 = 1` at the point `(a sec phi, b tan phi)`, show that `phi = sin^(-1) (b/(am))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

2x +sqrt6y=2 touches the hyperbola x^2-2y^2=4 , then the point of contact is :

If the line lx+my+n=0 touches the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 . Then

The line x+y=sqrt(2) p will touch the hyperbola 4 x^(2)-9 y^(2)=36, if

If the polar of y^2=4ax is always touching the hyperbola x^2/a^2-y^2/b^2=1 , then the locus of the pole is :

The straight line x+y=-sqrt2P will touch the hyperbola 4x^2-9y^2=36 if

The st. line y = 4x + c touches the hyperbola x^2-y^2=1 if .

The line y=x+a sqrt(2) touches the circle x^(2)+y^(2)=a^(2) at the point

The curve x^(n)/a^(n) + y^(n)/b^(n) = 2 touches the line, x/a + y/b = 2 at the point,

If (1 + tan theta) (1+ tan phi) = 2, then theta + phi =

The area between x^2/a^2+y^2/b^2 =1 and st.line x/a+y/b=1 is : x