Home
Class 12
MATHS
Let f(x)=int(0)^(x)e^(t)(t-1)(t-2)dt. Th...

Let `f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt.` Then, f decreases in the interval

A

`(-oo,-2)`

B

`(-2,-1)`

C

`[1,2]`

D

`(2,oo)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=[e^(x) (x-1)(x-2)] . Then f decrease in the interval :

Let, f(x) = int e^(x) (x-1)(x-2) dx , then f(x) decreases in the interval

If f(x) = int_(0)^(x) t sin t dt, then f'(x) is

If f(x) = int_(x^2)^(x^2 + 1) e^(-t^2) dt , find the interval in which f(x) is increasing :

Let f(x) = int_1^x sqrt(2 - t^2) dt . Then the real roots of the equation x^2 - f(x) = 0 are:

Let f(x) = int_1^x sqrt(2 - t^2)dt . Then the real roots of the equation x^2 - f' (x) = 0 are :

If f(x) = int_(2x)^(sinx) cos (t^(3)) dt then f '(x)

If f(x)=int_(0)^(x) log ((1-t)/(1+t)) dt , then discuss whether even or odd?