Home
Class 12
MATHS
If f(x) = xe^(x(1-x), then f(x) is...

If `f(x) = xe^(x(1-x)`, then f(x) is

A

increasing on `[-(1)/(2),1]`

B

decreasing on R

C

increasing on R

D

decreasing on `[-(1)/(2),1]`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = (1-x)/(1+x) , then f[f(cos x)] =

If f(x)=(1)/(1-x) then f[f{f(x)}]=

If f(x)= (1)/(1-x) , then f[f{x}]=

If f(x) = (x-1)/(x+1) , then f[1/f(x)] =

If f(x) = (x-3)/(x+1) , then f[f{f(x)}] =

If f(x) = 1 - 1/x , then f(f(1/x)) =

If f(x) = x tan^(-1)x , then f^(')(1) is equal to

If f(x)=log ((1+x)/(1-x)) , then