Home
Class 12
MATHS
If a lt 0 and f(x)=e^(ax )+ e^(-ax) i...

If ` a lt 0` and ` f(x)=e^(ax )+ e^(-ax)` is monotonically decreasing . Find the interval to which x belongs.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a lt 0, f(x) = e^(ax) + e^(-ax) and S = {x: f(x) is monotonically increasing} then S equals,

Let, f(x) = int e^(x) (x-1)(x-2) dx , then f(x) decreases in the interval

If a lt 0 , the function f(x)=e^(ax)+e^(-ax) is decreasing for all values of x, where

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

Let f(x)=[e^(x) (x-1)(x-2)] . Then f decrease in the interval :

If f(x) = int_(x^2)^(x^2 + 1) e^(-t^2) dt , find the interval in which f(x) is increasing :

If f(x)=be^(ax)+ae^(bx) , then f" (0) =

The function f(x) = (x)/(3) + (3)/(x) decreases in the interval

The function f(x)=ax+b , is strictly decreasing for all x in R iff :

Find f'(x). if f(x) = e^x-logx-sinx