Home
Class 12
MATHS
The function f(x) = int1^(x) [2(t-1)(t-2...

The function `f(x) = int_1^(x) [2(t-1)(t-2)^(3)+3(t-1)^(2)(t-2)^(2)] dt` attains its maximum at x =

A

maximum when `x=(7)/(5)` and minimum when x=1

B

maximum when x=1 and minimum when x=0

C

maximum when x=1 and minimum when x=2

D

maximum when x=1 and minimum when `x=(7)/(5)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The function L(x) = int_1^x (dt)/t satisfies the equation:

The point of extremum of the function phi (x) = int_1^(x) e^(t^(2)/2) (1-t^(2)) dt are

int (1+t^(2))/(1+t^(4))dt =

If f(x) = 1/x^(2) int_2^(x)[t^(2)+f^(')(t)]dt, then f^(')(2) =

If int_a^(x) [f(t) - 3t] dt = a^(2)-x^(2) then f(pi/6) =

The equations x=(1)/(2)(t+(1)/(t)), y=(1)/(2)(t-(1)/(t)), t ne 0 , represent

If f(x) = int_(2x)^(sinx) cos (t^(3)) dt then f '(x)