Home
Class 12
MATHS
Let f, g and h be real-valued functions ...

Let f, g and h be real-valued functions defined on the interval [0, 1] by:
`f(x)=e^(x^(2)) +e^(-x^(2)), g(x)=xe^(x^(2))+e^(-x^(2)) and h(x)=x^(2)e^(x^(2))+e^(-x^(2))`.
If a, b and c denote respectively the absolute maximum of f, g and h on [0, 1], then :

A

`a=bandcneb`

B

`a=c and a ne b`

C

`a ne b c ne b`

D

`a=b=c`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a real valued function defined on (0, 1) cup (2, 4) , such that f(x)=0 , for every x, then :

f(x) = ((e^(2x)-1)/(e^(2x)+1)) is

int ((3-x^(2))e^(x))/(1-2x+x^(2)) dx = e^(x).f(x) + c, then f(x) =

Let f(x)=x^2 and g(x)=2x+1 be two real valued functions,Find (i) (f+g)(x)

Let f(x)=x^2" and "g(x)=2x+1 be two real values functions, find (fg)(x) .

Let f(x)=x^2" and "g(x)=2x+1 be two real values functions, find (f+g)(x)

Let f(x)=x^2" and "g(x)=2x+1 be two real values functions, find (f-g)(x)