Home
Class 12
MATHS
int (cos 2x)/(sin^(2) x cos^(2)x) dx = ...

`int (cos 2x)/(sin^(2) x cos^(2)x) dx = ?`

Text Solution

Verified by Experts

The correct Answer is:
`-cotx-tanx+C`
Promotional Banner

Similar Questions

Explore conceptually related problems

int(sin 2x)/(sin^(2)x + 2 cos^(2)x) dx =

int(1)/(sin^(2)x cos^(2)x)dx=

int(dx)/(sin^2 x cos^2x)

int(sin2x)/(sin^(2)x+2cos^(2)x)dx=

int sin^(2)x.cos^(3)x dx =

Find : int(sin^(2)x-cos^(2)x)/(sin^(2)xcos^(2)x)dx :

int (sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx =

int (sin^(3)x+cos^(3)x)/(sin^(2)x. Cos^(2)x )dx =

int_0^(pi/2) x sin^(2) x. cos^(2) x dx =

The value of the integral int_0^pi (x sin^(2n) x)/(sin^(2n) x + cos^(2n) x)dx is :