Home
Class 12
MATHS
Let f(x)=x+ sin x . Suppose g denotes th...

Let `f(x)=x+ sin x` . Suppose g denotes the inverse function of f. The value of `g'(pi/4+1/sqrt2)` has the value equal to

A

`sqrt(2)-1`

B

`(sqrt(2)+1)/(sqrt(2))`

C

`2-sqrt(2)`

D

`sqrt(2)+1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If g is the inverse function of f and f'(x) = sin x then g'(x) =

If g is the inverse of a function f and f'(x)=(1)/(1+x^(5)) , then g'(x) is equal to :

If g is the inverse function of f and f^(')(x) = 1/(1+x^(n)) , then g^(')(x) eauals

Let f(x) = int_2^(x) (dt)/(sqrt(1+t^(4))) and g be the inverse of f. Then g^('1)(0) =

Let f be a real valued function defined on the interval (-1,1) such that e^(-x) f(x) = 2 + int_0^x sqrt(t^4 + 1) dt , for all x in (-1, 0) and let f^(-1) be the inverse function of f. Then (f^(-1))'(2) is equal to :

For x in R , the functions f(x) satisfies 2f(x)+f(1-x)=x^(2) . The value of f(4) is equal to

Let f(x)=x^2" and "g(x)=2x+1 be two real values functions, find (fg)(x) .

Let f(x)=x^2" and "g(x)=2x+1 be two real values functions, find (f+g)(x)

Let f(x)=x^2" and "g(x)=2x+1 be two real values functions, find (f-g)(x)