Home
Class 12
MATHS
The value of the integral inte^(sin^(2)...

The value of the integral `inte^(sin^(2)x)(cosx+cos^3x)sinx dx` is

A

`1/2 e^(sin^(2)x)(3-sin^(2)x)+C`

B

`e^( sin^(2)x)(1+1/2 cos^(2)x)+C`

C

`e^(sin^(2)x)(3 cos^(2)x + 2 sin^(2)x)+C`

D

`e^(sin^(2)x)( 2 cos^(2)x+3 sin^(2)x)+C`

Text Solution

Verified by Experts

The correct Answer is:
A, B
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the integral: int e^x (sinx+cosx)dx

The value of the integral int_0^pi (x sin^(2n) x)/(sin^(2n) x + cos^(2n) x)dx is :

The value of the integral int_0^(pi//2) (sin^(100) x - cos^(100) x) dx is :

The value of the integral int_(0)^(pi/2)(sin^(100) x - cos^(100)x)dx is

inte^(x)[(sinx+cosx)/(1-sin^(2)x)]dx is

int (2sinx-cosx)/(2cosx+sinx)dx =

int (tan^(m)x)/(sinx cosx)dx =

The value of the integral intunderset(0)overset(pi)(x sin^(2n)x)/(sin^(2x)x+cos^(2n)x) dx is

By using the properties of definite integrals, evaluate the integrals int_(0)^(pi/2)(sinx-cosx)/(1+sinxcosx)dx