Home
Class 12
MATHS
If int(1)/((x^2+1)(x^2+4))dx=a tan^(-1)....

If `int(1)/((x^2+1)(x^2+4))dx=a tan^(-1). x+b tan^(-1).(x)/(2)+c`, then :

A

A=1/3

B

A= -1/3

C

B= 1/6

D

B= -1/6

Text Solution

Verified by Experts

The correct Answer is:
A, D
Promotional Banner

Similar Questions

Explore conceptually related problems

int dx/((x^(2)+1)(x^(2)+4))= k tan^(-1) x + l (tan^(-1)) x/2 then

If tan^(-1) 2x + tan^(-1) 3x = (pi)/(4) , then x =

If int (2x^(2)+3)/((x^(2)-1)(x^(2)+4)) dx = a log((x-1)/(x+1)) +b tan^(-1) (x/2) +c then the values of a and b are

int d^(2)/(dx^(2))(tan^(-1) x) dx =

int_0^(1) tan^(-1) x dx =

If y = tan^(-1) ((2x)/(1-x^(2))) then dy/dx =

d/dx [tan (tan^(-1) (x/a) - tan^(-1) ((x-a)/(x+a)))] =

If int (1)/(4-3 cos^(2) x+5sin^(2)x)dx=(1)/(3)tan^(-1)(f(x))+c ,then f(x)equals :

int_(-1)^(1) d/(dx) ((tan^(-1)) 1/x) dx =

If 3 tan ^(-1)((1)/(2+sqrt(3)))-tan ^(-1) (1)/(x)=tan ^(-1) (1)/(3) then x=