Home
Class 12
MATHS
If sin ^(3) x sin 3 x=sum(r=0)^(n) a(r)...

If ` sin ^(3) x sin 3 x=sum_(r=0)^(n) a_(r) cos r x` is an identity in `x,` then `n=`

Text Solution

Verified by Experts

The correct Answer is:
`n = 6`
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+2 x+x^(2))^(n)=sum_(r=0)^(2 n) a_(r) x^(r) , then a_(r) =

Let n be an odd integer. If sin n theta=sum_(r=0)^(n)b_(r) sin^(r)theta for every value of theta , then

Let (1+x^(2))^(2)(1+x)^(n) = sum_(k=0)^(n+4) a_(k) x^(k) . If a_(1) , a_(2) , a_(3) are in A.P., then n=

If y=sin^(n)x cos n x, then (dy)/(dx) is

sin (n +1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos x

Prove that sum_(r=0)^n 3^r nCundersetr = 4^n .

lim_(n to oo) sum_(r = 1)^(n) 1/n sin(r pi)/(2pi) is :

For 0 lt theta lt ( pi )/(2) , if x = sum_(n=0)^(oo)cos^(2n) theta, y = sum_(n=0)^(oo) sin^(2n) theta ,z=sum_(n=0)^(oo)cos^(2n) theta sin^(2n) theta ,then :

(sin x + sin 3x )/( cos x + cos 3x )= tan 2x

Prove that sum_(r=0)^n^n C_rsinr xcos(n-r)x=2^(n-1)sin(n x)dot