Home
Class 12
MATHS
If A+B+C=pi, prove that sin 2A+sin 2B+si...

If `A+B+C=pi`, prove that `sin 2A+sin 2B+sin 2C=4 sinA sin B sinC.`

Text Solution

Verified by Experts

The correct Answer is:
`4 sin A sin B sin C`
Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , Prove that sin2A+sin2B+sin2C=4sinA.sinB.sinC

Prove that in any triangle ABC, (sin A)/a= (sin B)/b=(Sin C)/c .

With the usual notation in the triangle A B C [[ 1 , 1 , 1 ],[ sin A , sin B , sin C ],[ sin ^2 A , sin ^2 B , sin ^3 C ]] =

If B= 15^(@) ,then prove that 4 sin 2B.cos 4B.sin6B=1.

If A + B = 90^(@) , prove that sqrt((tan A tan B + tan A cot B)/(sin A sec B ) - (sin^(2) B)/(cos^(2)A)) = tan A .

Prove that cos (pi/2 + x) = - sin x .

sin ^(2) 6x - sin ^(2) 4x = sin 2x sin 10x

sin(A+B)=sinA cos B +cos A sin B

Taking A = 60^(@) and B=30^(@) verify that sin (A-B) = sin A cos B - cos A sin B .

sin(A-B)=sinA cos B-cosA sinB