Home
Class 12
MATHS
Find the maximum value of 1+sin((pi)/(4)...

Find the maximum value of `1+sin((pi)/(4)+theta)`
`+2cos ((pi)/(4)-theta)` for all real values of `theta`.

Text Solution

Verified by Experts

The correct Answer is:
4
Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of sin theta is:

The maximum value of 12 sin theta-9 sin ^(2) theta is

Given A=sin ^(2) theta+cos ^(4) theta then for all real theta

The value of int_0^(pi) |sin^(3) theta| d theta =

Find the value of sec^(2)theta(1+sin theta)(1-sin theta)

The value of the integral int_0^(pi/4) (sin theta + cos theta)/(9+16 sin 2 theta) d theta is

If (cos^(3) theta )/( (1- sin theta ))+( sin^(3) theta )/( (1+ cos theta ))=1+ cos theta , then number of possible values of theta is ( where theta in [0,2pi] )

If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ) , then sin theta + cos theta is equal to

If sin theta-cos theta=(1)/(2) ,then find the value of sintheta+costheta