Home
Class 12
MATHS
Let n be an odd integer. If sin n theta=...

Let n be an odd integer. If `sin n theta=sum_(r=0)^(n)b_(r) sin^(r)theta` for every value of `theta`, then

A

`b_(0)=1, b_(1)=3`

B

`b_(0)=0, b_(1)=n`

C

`b_(0)=-1, b_(1)=n`

D

`b_(0)=0, b_(1)=n^(2)-3n-3`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let n be an odd integer if sin ntheta = underset(r=0) overset(n)(sum)b_(r)sin^(r)theta , for every value of theta , then :

sum_(r=0)^(m)( n+r )C_(n)=

The value of sum_(r=1)^(n)(nP_(r))/(r!)=

If sin theta=(7)/(25), cos theta= (24)/(25) find the value of sin^(2)theta+cos^(2)theta

If Sin theta = 4/5 and Cos theta=3/5 find the value of Sin^(2)theta+Cos^(2) theta

If x+y=1 , then sum_(r=0)^(n)r^(2)""^(n)C_(r)x^(r)y^(n-r) equals:

If sin ^(3) x sin 3 x=sum_(r=0)^(n) a_(r) cos r x is an identity in x, then n=

If sqrt(3) sin theta - cos theta = 0 and 0^(@) lt theta lt 90^(@) , find the value of theta .

lim_(n rarr oo) sum_(r=0)^(n-1) 1/(n+r) =

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .