Home
Class 12
MATHS
If R = (a^(3)+1)/(a-1) and S = (a^(2) - ...

If `R = (a^(3)+1)/(a-1)` and `S = (a^(2) - a+1)/(a+1)`, then R + S is:

A

`(a-1)/(a+1)`

B

`1/(a^(2) + a+1)`

C

1

D

`(a(a^3+2a^2-2a+3))/(a^2-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( R + S \) where: \[ R = \frac{a^3 + 1}{a - 1} \] \[ S = \frac{a^2 - a + 1}{a + 1} \] ### Step 1: Simplifying \( R \) First, we can factor \( a^3 + 1 \) using the sum of cubes formula: \[ a^3 + 1 = (a + 1)(a^2 - a + 1) \] Thus, we can rewrite \( R \): \[ R = \frac{(a + 1)(a^2 - a + 1)}{a - 1} \] ### Step 2: Finding a common denominator for \( R + S \) Next, we need to add \( R \) and \( S \). The common denominator will be \( (a - 1)(a + 1) \): \[ R + S = \frac{(a + 1)(a^2 - a + 1)}{a - 1} + \frac{a^2 - a + 1}{a + 1} \] ### Step 3: Rewrite \( S \) with the common denominator We rewrite \( S \) to have the common denominator: \[ S = \frac{(a^2 - a + 1)(a - 1)}{(a + 1)(a - 1)} \] ### Step 4: Combine the two fractions Now we can combine \( R \) and \( S \): \[ R + S = \frac{(a + 1)(a^2 - a + 1) + (a^2 - a + 1)(a - 1)}{(a - 1)(a + 1)} \] ### Step 5: Simplifying the numerator Now we simplify the numerator: 1. Expand \( (a + 1)(a^2 - a + 1) \): \[ = a^3 - a^2 + a + a^2 - a + 1 = a^3 + 1 \] 2. Expand \( (a^2 - a + 1)(a - 1) \): \[ = a^3 - a^2 + a - a^2 + a - 1 = a^3 - 2a^2 + 2a - 1 \] Now, combine both expansions: \[ a^3 + 1 + a^3 - 2a^2 + 2a - 1 = 2a^3 - 2a^2 + 2a \] ### Step 6: Final expression for \( R + S \) Thus, we have: \[ R + S = \frac{2a^3 - 2a^2 + 2a}{(a - 1)(a + 1)} \] ### Step 7: Factor out the numerator We can factor out \( 2 \): \[ R + S = \frac{2(a^3 - a^2 + a)}{(a - 1)(a + 1)} \] ### Step 8: Final Result The final expression for \( R + S \) is: \[ R + S = \frac{2a(a^2 - a + 1)}{(a - 1)(a + 1)} \]
Promotional Banner

Topper's Solved these Questions

  • RATIONAL EXPRESSIONS

    ARIHANT PUBLICATION JHARKHAND|Exercise EXAM BOOSTER FOR CRACKING EXAM |22 Videos
  • QUADRATIC EQUATIONS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exaam Booster for Cracking Exam|25 Videos
  • RECTANGULAR COORDINATES, STRAIGHT LINES, FAMILY OF LINES

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster for Cracking Exam |30 Videos

Similar Questions

Explore conceptually related problems

If R = (x^(2)+2)/(x-3) and S =(x-1)/x , then find (a) R + S (b) R - S (c) R.S (d) R/S

Let S={(x,y) in R^(2):(y^(2))/(1+r)-(x^(2))/(1-r)=1} , where r ne pm 1 . Then S represents:

Let S _(K) = sum _(r=1) ^(k) tan ^(-1) (( 6 ^r)/( 2 ^( 2 r + 1) + 3 ^( 2r +1))) . Then lim _( k to oo) S _(k) is equal to :

If S=(a)/(1-r^(3)) , then expres r in terms of S and a.

ARIHANT PUBLICATION JHARKHAND-RATIONAL EXPRESSIONS-EXAM BOOSTER FOR CRACKING EXAM
  1. Which of the following are rational expressions ? I. (x^(3) - 3x^(2)...

    Text Solution

    |

  2. If A =(x+1)/(x-1) and B = (x-1)/(x+1), then A + B is:

    Text Solution

    |

  3. If R = (a^(3)+1)/(a-1) and S = (a^(2) - a+1)/(a+1), then R + S is:

    Text Solution

    |

  4. The expression to be added to (5x^(2) - 7x + 2) to produce (7x^(2) -1)...

    Text Solution

    |

  5. (x^(2) -x-2)/(2x^(2) +x-3) in lowest term is:

    Text Solution

    |

  6. The simplified form of (a+2)/(a+3) - (a+1)/(a+2) is:

    Text Solution

    |

  7. ((x+1)/(x^(2)-1) -2/x) expressed a rational expression is:

    Text Solution

    |

  8. The product of additive inverse of (x+6)/(x+2) and (5x+2)/(5x-3) is:

    Text Solution

    |

  9. Which rational expression should be added to (x^(3)-1)/(x^(2)+2) to ge...

    Text Solution

    |

  10. The value of: (1 + 1/(a+1))(1+1/(a+2)) (1+1/(a+3))(1+1/(a+4)) is

    Text Solution

    |

  11. The expression ((x-1)(x-2)(x^(2) - 9x + 14))/((x-7)(x^(2) - 3x + 2)) i...

    Text Solution

    |

  12. The value of (a-c)/((a-b)(x-a)) + (b-c)/((b-a)(x-b)) is:

    Text Solution

    |

  13. The sum of the rational expression (x-3)/(x^(2) +1) and its reciprocal...

    Text Solution

    |

  14. If A = 4x + 1/x, then the value of A + 1/A is:

    Text Solution

    |

  15. If x = b/(a-b) and y=a/(a+b), then the value of 1/x + 1/y is:

    Text Solution

    |

  16. The value of a/((a-b)(a-c)) + b/((b-c)(b-a)) + c/((c-a)(c-b)) is:

    Text Solution

    |

  17. If A =((x-1)/(x+1)) and B =((x+1)/(x-1)), then the value of (A+B)^(2)...

    Text Solution

    |

  18. The value of 1/((1-a)(1-b))+ a^(2)/((1-a)(b-a)) -b^(2)/((b-1)(a-b)) is...

    Text Solution

    |

  19. The value of ((x/y- y/x)(y/z -z/y) (z/x -x/z))/((1/x^(2) -1/y^(2))(1/y...

    Text Solution

    |

  20. If alpha, beta and gamma are the roots of the cubic equation (x-1)(x^(...

    Text Solution

    |