Home
Class 12
MATHS
The value of (a-c)/((a-b)(x-a)) + (b-c)/...

The value of `(a-c)/((a-b)(x-a)) + (b-c)/((b-a)(x-b))` is:

A

`(x-c)/((x-a)(x-b))`

B

`(x-a)/((x-b)(x-c))`

C

`(x -c)/((x-b)(a-x))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{a-c}{(a-b)(x-a)} + \frac{b-c}{(b-a)(x-b)}\), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{a-c}{(a-b)(x-a)} + \frac{b-c}{(b-a)(x-b)} \] ### Step 2: Find a common denominator The common denominator for the two fractions is \((a-b)(b-a)(x-a)(x-b)\). Notice that \((b-a) = -(a-b)\), so we can rewrite the second term: \[ \frac{b-c}{(b-a)(x-b)} = \frac{-(b-c)}{(a-b)(x-b)} \] ### Step 3: Combine the fractions Now, we can combine the two fractions: \[ \frac{(a-c)(x-b) - (b-c)(x-a)}{(a-b)(b-a)(x-a)(x-b)} \] ### Step 4: Expand the numerator Now we expand the numerator: \[ (a-c)(x-b) - (b-c)(x-a) = ax - ab - cx + bc - bx + ac + cx - ac \] This simplifies to: \[ ax - bx - ab + bc \] ### Step 5: Factor the numerator We can factor the numerator: \[ (a-b)x + (bc - ab) \] ### Step 6: Substitute back into the expression Now, we substitute back into the expression: \[ \frac{(a-b)x + (bc - ab)}{(a-b)(b-a)(x-a)(x-b)} \] ### Step 7: Simplify the expression Since \((a-b)\) is common in the numerator and denominator, we can cancel it out: \[ \frac{x + \frac{bc - ab}{a-b}}{(b-a)(x-a)(x-b)} \] ### Step 8: Final expression The final expression simplifies to: \[ \frac{x - c}{(x-a)(x-b)} \] ### Conclusion Thus, the value of the given expression is: \[ \frac{x - c}{(x-a)(x-b)} \] ---
Promotional Banner

Topper's Solved these Questions

  • RATIONAL EXPRESSIONS

    ARIHANT PUBLICATION JHARKHAND|Exercise EXAM BOOSTER FOR CRACKING EXAM |22 Videos
  • QUADRATIC EQUATIONS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exaam Booster for Cracking Exam|25 Videos
  • RECTANGULAR COORDINATES, STRAIGHT LINES, FAMILY OF LINES

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster for Cracking Exam |30 Videos

Similar Questions

Explore conceptually related problems

If 3x=a+b+c, then the value of (x-a)^(3)+(x-b)^(3)+(x-c)^(3)-3(x-a)(x-b)(x-c) is (a) a+b+c( b )(a-b)(b-c)(c-a)(c)0(d) None of these

The value of (x^(a-b))^(c ) xx (x^(b-c))^(a) xx (x^(c-a))^(b) is

The equation (a(x-b)(x-c))/((a-b)(a-c)) + (b(x-c)(x-a))/((b-c)(b-a))+ (c (x-a) (x-b))/((c-a)(c-b))= x is satisfied by

The value of ((x^(a))/(x^(b)))^(a+b) xx ((x^(b))/(x^(c)))^(b+c) xx ((x^(c))/(x^(a)))^(c + a) is equal to

The following steps are involved in finding the value of ((x^a)/(x^b))((x^b)/(x^c))((x^c)/(x^a)) . Arrange them in sequential order. (A) x^0=1 (B) x^(a-b+b-c+c-a) (C) ((x^a)/(x^b))((x^b)/(x^c))((x^c)/(x^a))=x^(a-b).x^(b-c).x^(c-a)

The value of x in the equation: (x-b-c)/(a)+(x-c-a)/(b)+(x-a-b)/(c)=3

ARIHANT PUBLICATION JHARKHAND-RATIONAL EXPRESSIONS-EXAM BOOSTER FOR CRACKING EXAM
  1. If A =(x+1)/(x-1) and B = (x-1)/(x+1), then A + B is:

    Text Solution

    |

  2. If R = (a^(3)+1)/(a-1) and S = (a^(2) - a+1)/(a+1), then R + S is:

    Text Solution

    |

  3. The expression to be added to (5x^(2) - 7x + 2) to produce (7x^(2) -1)...

    Text Solution

    |

  4. (x^(2) -x-2)/(2x^(2) +x-3) in lowest term is:

    Text Solution

    |

  5. The simplified form of (a+2)/(a+3) - (a+1)/(a+2) is:

    Text Solution

    |

  6. ((x+1)/(x^(2)-1) -2/x) expressed a rational expression is:

    Text Solution

    |

  7. The product of additive inverse of (x+6)/(x+2) and (5x+2)/(5x-3) is:

    Text Solution

    |

  8. Which rational expression should be added to (x^(3)-1)/(x^(2)+2) to ge...

    Text Solution

    |

  9. The value of: (1 + 1/(a+1))(1+1/(a+2)) (1+1/(a+3))(1+1/(a+4)) is

    Text Solution

    |

  10. The expression ((x-1)(x-2)(x^(2) - 9x + 14))/((x-7)(x^(2) - 3x + 2)) i...

    Text Solution

    |

  11. The value of (a-c)/((a-b)(x-a)) + (b-c)/((b-a)(x-b)) is:

    Text Solution

    |

  12. The sum of the rational expression (x-3)/(x^(2) +1) and its reciprocal...

    Text Solution

    |

  13. If A = 4x + 1/x, then the value of A + 1/A is:

    Text Solution

    |

  14. If x = b/(a-b) and y=a/(a+b), then the value of 1/x + 1/y is:

    Text Solution

    |

  15. The value of a/((a-b)(a-c)) + b/((b-c)(b-a)) + c/((c-a)(c-b)) is:

    Text Solution

    |

  16. If A =((x-1)/(x+1)) and B =((x+1)/(x-1)), then the value of (A+B)^(2)...

    Text Solution

    |

  17. The value of 1/((1-a)(1-b))+ a^(2)/((1-a)(b-a)) -b^(2)/((b-1)(a-b)) is...

    Text Solution

    |

  18. The value of ((x/y- y/x)(y/z -z/y) (z/x -x/z))/((1/x^(2) -1/y^(2))(1/y...

    Text Solution

    |

  19. If alpha, beta and gamma are the roots of the cubic equation (x-1)(x^(...

    Text Solution

    |

  20. When x^(5)-5x^(4)+9x^(3)-6x^(2)-16x+13 is divided by x^(2)-3x+a , then...

    Text Solution

    |