Home
Class 12
MATHS
The value of a/((a-b)(a-c)) + b/((b-c)(b...

The value of `a/((a-b)(a-c)) + b/((b-c)(b-a)) + c/((c-a)(c-b))` is:

A

0

B

2

C

1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{a}{(a-b)(a-c)} + \frac{b}{(b-c)(b-a)} + \frac{c}{(c-a)(c-b)}, \] we will simplify it step by step. ### Step 1: Rewrite the Denominators We notice that the denominators can be rearranged. Specifically, we can express \( (b-a) \) as \( -(a-b) \) and \( (c-a) \) as \( -(a-c) \). This gives us: \[ \frac{a}{(a-b)(a-c)} + \frac{b}{(b-c)(-(a-b))} + \frac{c}{(-(a-c))(c-b)}. \] ### Step 2: Factor Out Negative Signs This allows us to rewrite the second and third fractions: \[ \frac{a}{(a-b)(a-c)} - \frac{b}{(b-c)(a-b)} - \frac{c}{(a-c)(c-b)}. \] ### Step 3: Find a Common Denominator The common denominator for all three fractions is \( (a-b)(b-c)(c-a) \). We will rewrite each fraction with this common denominator: 1. The first fraction becomes: \[ \frac{a(b-c)}{(a-b)(b-c)(a-c)}. \] 2. The second fraction becomes: \[ -\frac{b(a-c)}{(b-c)(a-b)(c-a)}. \] 3. The third fraction becomes: \[ -\frac{c(a-b)}{(c-a)(b-c)(a-b)}. \] ### Step 4: Combine the Fractions Now we can combine the fractions: \[ \frac{a(b-c) - b(a-c) - c(a-b)}{(a-b)(b-c)(c-a)}. \] ### Step 5: Simplify the Numerator Now we will simplify the numerator: 1. Expanding \( a(b-c) \): \[ ab - ac. \] 2. Expanding \( -b(a-c) \): \[ -ab + bc. \] 3. Expanding \( -c(a-b) \): \[ -ac + bc. \] Putting it all together, we have: \[ ab - ac - ab + bc - ac + bc = 2bc - 2ac. \] ### Step 6: Factor the Numerator We can factor out a 2 from the numerator: \[ 2(bc - ac) = 2c(b-a). \] ### Step 7: Final Expression Thus, our expression becomes: \[ \frac{2c(b-a)}{(a-b)(b-c)(c-a)}. \] ### Step 8: Evaluate the Expression Notice that \( (b-a) = -(a-b) \), hence we can rewrite the expression as: \[ \frac{-2c(a-b)}{(a-b)(b-c)(c-a)}. \] Cancelling \( (a-b) \) from the numerator and denominator (assuming \( a \neq b \)), we get: \[ \frac{-2c}{(b-c)(c-a)}. \] ### Conclusion Since we have reached a point where the numerator can be simplified to zero when \( a = b \), \( b = c \), or \( c = a \), we conclude that: \[ \frac{a}{(a-b)(a-c)} + \frac{b}{(b-c)(b-a)} + \frac{c}{(c-a)(c-b)} = 0. \] ### Final Answer Thus, the value of the expression is: \[ \boxed{0}. \] ---
Promotional Banner

Topper's Solved these Questions

  • RATIONAL EXPRESSIONS

    ARIHANT PUBLICATION JHARKHAND|Exercise EXAM BOOSTER FOR CRACKING EXAM |22 Videos
  • QUADRATIC EQUATIONS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exaam Booster for Cracking Exam|25 Videos
  • RECTANGULAR COORDINATES, STRAIGHT LINES, FAMILY OF LINES

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster for Cracking Exam |30 Videos

Similar Questions

Explore conceptually related problems

Let a,b,c belong to R and a!=b!=c then find the value of ((a-b)^(2))/((b-c)(c-a))+((b-c)^(2))/((a-b)(c-a))+((c-a)^(2))/((a-b)(b-c))

Let a,b,c belong to R and a!=b!=c then find the value of ((a-b)^(2))/((b-c)(c-a))+((b-c)^(2))/((a-b)(c-a))+((c-a)^(2))/((a-b)(b-c))

Find the value of ((a+b)^(2))/((b-c)(c-a))+((b+c)^(2))/((a-b)(c-a))+((c+a)^(2))/((a-b)(b-c))

the value of a^(log((b)/(c)))*b^(log((c)/(a)))c^(log((a)/(b)))

If ab + bc + ca = 0, then find the value of (b)/((a+b)(b+c))+(c)/((a+c)(c+b))+(a)/((a+b)(c+a))

ARIHANT PUBLICATION JHARKHAND-RATIONAL EXPRESSIONS-EXAM BOOSTER FOR CRACKING EXAM
  1. If A =(x+1)/(x-1) and B = (x-1)/(x+1), then A + B is:

    Text Solution

    |

  2. If R = (a^(3)+1)/(a-1) and S = (a^(2) - a+1)/(a+1), then R + S is:

    Text Solution

    |

  3. The expression to be added to (5x^(2) - 7x + 2) to produce (7x^(2) -1)...

    Text Solution

    |

  4. (x^(2) -x-2)/(2x^(2) +x-3) in lowest term is:

    Text Solution

    |

  5. The simplified form of (a+2)/(a+3) - (a+1)/(a+2) is:

    Text Solution

    |

  6. ((x+1)/(x^(2)-1) -2/x) expressed a rational expression is:

    Text Solution

    |

  7. The product of additive inverse of (x+6)/(x+2) and (5x+2)/(5x-3) is:

    Text Solution

    |

  8. Which rational expression should be added to (x^(3)-1)/(x^(2)+2) to ge...

    Text Solution

    |

  9. The value of: (1 + 1/(a+1))(1+1/(a+2)) (1+1/(a+3))(1+1/(a+4)) is

    Text Solution

    |

  10. The expression ((x-1)(x-2)(x^(2) - 9x + 14))/((x-7)(x^(2) - 3x + 2)) i...

    Text Solution

    |

  11. The value of (a-c)/((a-b)(x-a)) + (b-c)/((b-a)(x-b)) is:

    Text Solution

    |

  12. The sum of the rational expression (x-3)/(x^(2) +1) and its reciprocal...

    Text Solution

    |

  13. If A = 4x + 1/x, then the value of A + 1/A is:

    Text Solution

    |

  14. If x = b/(a-b) and y=a/(a+b), then the value of 1/x + 1/y is:

    Text Solution

    |

  15. The value of a/((a-b)(a-c)) + b/((b-c)(b-a)) + c/((c-a)(c-b)) is:

    Text Solution

    |

  16. If A =((x-1)/(x+1)) and B =((x+1)/(x-1)), then the value of (A+B)^(2)...

    Text Solution

    |

  17. The value of 1/((1-a)(1-b))+ a^(2)/((1-a)(b-a)) -b^(2)/((b-1)(a-b)) is...

    Text Solution

    |

  18. The value of ((x/y- y/x)(y/z -z/y) (z/x -x/z))/((1/x^(2) -1/y^(2))(1/y...

    Text Solution

    |

  19. If alpha, beta and gamma are the roots of the cubic equation (x-1)(x^(...

    Text Solution

    |

  20. When x^(5)-5x^(4)+9x^(3)-6x^(2)-16x+13 is divided by x^(2)-3x+a , then...

    Text Solution

    |