Home
Class 12
MATHS
The value of 1/((1-a)(1-b))+ a^(2)/((1-a...

The value of `1/((1-a)(1-b))+ a^(2)/((1-a)(b-a)) -b^(2)/((b-1)(a-b))` is:

A

1

B

0

C

2

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{1}{(1-a)(1-b)} + \frac{a^2}{(1-a)(b-a)} - \frac{b^2}{(b-1)(a-b)} \] we will simplify it step by step. ### Step 1: Identify the common denominator The denominators are \((1-a)(1-b)\), \((1-a)(b-a)\), and \((b-1)(a-b)\). We can rewrite \((b-1)(a-b)\) as \(-(1-b)(b-a)\). Thus, the common denominator can be taken as: \[ (1-a)(1-b)(a-b) \]
Promotional Banner

Topper's Solved these Questions

  • RATIONAL EXPRESSIONS

    ARIHANT PUBLICATION JHARKHAND|Exercise EXAM BOOSTER FOR CRACKING EXAM |22 Videos
  • QUADRATIC EQUATIONS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exaam Booster for Cracking Exam|25 Videos
  • RECTANGULAR COORDINATES, STRAIGHT LINES, FAMILY OF LINES

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster for Cracking Exam |30 Videos

Similar Questions

Explore conceptually related problems

Given abc!=0,a+b+c=0 and a^(2)+b^(2)+c^(2)=1 .The value of a((1)/(b)+(1)/(c))+b((1)/(c)+(1)/(a))+c((1)/(a)+(1)/(b)) is equal to

If |a|<1and|b|<1, then the sum of the series 1+(1+a)b+(1+a+a^(2))b^(2)+(1+a+a^(2)+a^(3))b^(3)+ is (1)/((1-a)(1-b)) b.(1)/((1-a)(1-ab)) c.(1)/((1-b)(1-ab)) d.(1)/((1-a)(1-b)(1-ab))

If a=2, b= 3 find the values of (a^(b) + b^(a))^(-1) (ii) (a^(a) + b^(b))^(-1)

If a=bc and c=a-b, then the value of a is b^(2)-1( b )(b^(2))/(b-1) (c) (b)/(b-1) (d) None of these

If a b+b c+c a=0 , then what is the value of (1/(a^2-b c)+1/(b^2-c a)+1/(c^2-a b)) ? (a) 0 (b) 1 (c) 3 (d) a+b+c

Prove that (i) (a^(-1))/(a^(-1) + b^(-1)) + (a^(-1))/(a^(-1)-b^(-1)) = (2b^(2))/(b^(2) -a^(2)) (ii) (1)/(1+x^(a-b)) + (1)/(1+x^(b-a)) = 1

(a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^(2))/(b^(2)-a^(2))

(a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^(2))/(b^(2)-a^(2))

ARIHANT PUBLICATION JHARKHAND-RATIONAL EXPRESSIONS-EXAM BOOSTER FOR CRACKING EXAM
  1. If A =(x+1)/(x-1) and B = (x-1)/(x+1), then A + B is:

    Text Solution

    |

  2. If R = (a^(3)+1)/(a-1) and S = (a^(2) - a+1)/(a+1), then R + S is:

    Text Solution

    |

  3. The expression to be added to (5x^(2) - 7x + 2) to produce (7x^(2) -1)...

    Text Solution

    |

  4. (x^(2) -x-2)/(2x^(2) +x-3) in lowest term is:

    Text Solution

    |

  5. The simplified form of (a+2)/(a+3) - (a+1)/(a+2) is:

    Text Solution

    |

  6. ((x+1)/(x^(2)-1) -2/x) expressed a rational expression is:

    Text Solution

    |

  7. The product of additive inverse of (x+6)/(x+2) and (5x+2)/(5x-3) is:

    Text Solution

    |

  8. Which rational expression should be added to (x^(3)-1)/(x^(2)+2) to ge...

    Text Solution

    |

  9. The value of: (1 + 1/(a+1))(1+1/(a+2)) (1+1/(a+3))(1+1/(a+4)) is

    Text Solution

    |

  10. The expression ((x-1)(x-2)(x^(2) - 9x + 14))/((x-7)(x^(2) - 3x + 2)) i...

    Text Solution

    |

  11. The value of (a-c)/((a-b)(x-a)) + (b-c)/((b-a)(x-b)) is:

    Text Solution

    |

  12. The sum of the rational expression (x-3)/(x^(2) +1) and its reciprocal...

    Text Solution

    |

  13. If A = 4x + 1/x, then the value of A + 1/A is:

    Text Solution

    |

  14. If x = b/(a-b) and y=a/(a+b), then the value of 1/x + 1/y is:

    Text Solution

    |

  15. The value of a/((a-b)(a-c)) + b/((b-c)(b-a)) + c/((c-a)(c-b)) is:

    Text Solution

    |

  16. If A =((x-1)/(x+1)) and B =((x+1)/(x-1)), then the value of (A+B)^(2)...

    Text Solution

    |

  17. The value of 1/((1-a)(1-b))+ a^(2)/((1-a)(b-a)) -b^(2)/((b-1)(a-b)) is...

    Text Solution

    |

  18. The value of ((x/y- y/x)(y/z -z/y) (z/x -x/z))/((1/x^(2) -1/y^(2))(1/y...

    Text Solution

    |

  19. If alpha, beta and gamma are the roots of the cubic equation (x-1)(x^(...

    Text Solution

    |

  20. When x^(5)-5x^(4)+9x^(3)-6x^(2)-16x+13 is divided by x^(2)-3x+a , then...

    Text Solution

    |