Home
Class 12
MATHS
The value of ((x/y- y/x)(y/z -z/y) (z/x ...

The value of `((x/y- y/x)(y/z -z/y) (z/x -x/z))/((1/x^(2) -1/y^(2))(1/y^(2)-1/z^(2))(1/z^(2)-1/x^(2)))` is

A

`x^(2)y^(2)z^(2)`

B

`-x^(2)y^(2)z^(2)`

C

`-x^(2)y^(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \[ \frac{( \frac{x}{y} - \frac{y}{x})( \frac{y}{z} - \frac{z}{y})( \frac{z}{x} - \frac{x}{z})}{( \frac{1}{x^2} - \frac{1}{y^2})( \frac{1}{y^2} - \frac{1}{z^2})( \frac{1}{z^2} - \frac{1}{x^2})} \] we will simplify both the numerator and the denominator step by step. ### Step 1: Simplify the Numerator The numerator consists of three products: 1. \(\frac{x}{y} - \frac{y}{x} = \frac{x^2 - y^2}{xy}\) 2. \(\frac{y}{z} - \frac{z}{y} = \frac{y^2 - z^2}{yz}\) 3. \(\frac{z}{x} - \frac{x}{z} = \frac{z^2 - x^2}{zx}\) Thus, the numerator can be rewritten as: \[ \frac{x^2 - y^2}{xy} \cdot \frac{y^2 - z^2}{yz} \cdot \frac{z^2 - x^2}{zx} \] Combining these fractions gives: \[ \frac{(x^2 - y^2)(y^2 - z^2)(z^2 - x^2)}{xyz \cdot xyz} = \frac{(x^2 - y^2)(y^2 - z^2)(z^2 - x^2)}{(xyz)^2} \] ### Step 2: Simplify the Denominator The denominator consists of three differences of reciprocals: 1. \(\frac{1}{x^2} - \frac{1}{y^2} = \frac{y^2 - x^2}{x^2y^2}\) 2. \(\frac{1}{y^2} - \frac{1}{z^2} = \frac{z^2 - y^2}{y^2z^2}\) 3. \(\frac{1}{z^2} - \frac{1}{x^2} = \frac{x^2 - z^2}{z^2x^2}\) Thus, the denominator can be rewritten as: \[ \frac{(y^2 - x^2)(z^2 - y^2)(x^2 - z^2)}{(x^2y^2)(y^2z^2)(z^2x^2)} \] Combining these fractions gives: \[ \frac{(y^2 - x^2)(z^2 - y^2)(x^2 - z^2)}{(x^2y^2z^2)^2} \] ### Step 3: Combine the Numerator and Denominator Now we can combine the simplified numerator and denominator: \[ \frac{\frac{(x^2 - y^2)(y^2 - z^2)(z^2 - x^2)}{(xyz)^2}}{\frac{(y^2 - x^2)(z^2 - y^2)(x^2 - z^2)}{(x^2y^2z^2)^2}} \] This simplifies to: \[ \frac{(x^2 - y^2)(y^2 - z^2)(z^2 - x^2)}{(y^2 - x^2)(z^2 - y^2)(x^2 - z^2)} \cdot \frac{(x^2y^2z^2)^2}{(xyz)^2} \] ### Step 4: Cancel Common Terms The terms \((x^2 - y^2)\), \((y^2 - z^2)\), and \((z^2 - x^2)\) will cancel out, leading to: \[ \frac{(x^2y^2z^2)}{1} = x^2y^2z^2 \] ### Step 5: Final Result The final expression simplifies to: \[ -1 \cdot \frac{1}{1} = -x^2y^2z^2 \] Thus, the value of the given expression is: \[ -x^2y^2z^2 \]
Promotional Banner

Topper's Solved these Questions

  • RATIONAL EXPRESSIONS

    ARIHANT PUBLICATION JHARKHAND|Exercise EXAM BOOSTER FOR CRACKING EXAM |22 Videos
  • QUADRATIC EQUATIONS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exaam Booster for Cracking Exam|25 Videos
  • RECTANGULAR COORDINATES, STRAIGHT LINES, FAMILY OF LINES

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster for Cracking Exam |30 Videos

Similar Questions

Explore conceptually related problems

The value of (x^(2)-(y-z)^(2))/((x+z)^(2)-y^(2))+(y^(2)-(x-z)^(2))/((x+y)^(2)-z^(2))+(z^(2)-(x-y)^(2))/((y+z)^(2)-x^(2)) is -1(b)0(c)1(d) None of these

If x+y+z=xyz, then value of (x)/(1-x^(2))+(y)/(1-y^(2))+(z)/(1-z^(2))(x)/(1-x^(2))(y)/(1-y^(2))(z)/(1-z^(2))

If x+y+z=0 then what is the value of (1)/(x^(2)+y^(2)-z^(2)) +(1)/(y^(2)+z^(2)-x^(2)) +(1)/(z^(2)+x^(2)-y^(2)) ?

"The value of "(x^(2))/((x-y)(x-z))+(y^(2))/((y-z)(y-x))+(z^(2))/((z-x)(z-y))" is : "

The value of |{:(x,x^2-yz,1),(y,y^2-zy,1),(z,z^2-xy,1):}| is

The value of Delta = |((a^(x) + a^(-x))^(2),(a^(x) -a^(-x))^(2),1),((a^(y) + a^(-y))^(2),(a^(y) -a^(-y))^(2),1),((a^(z) + a^(-z))^(2),(a^(z) - a^(-z))^(2),1)| , is

(1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-y)+(1)/(y-z)+(1)/(z-x))^(2)

If x+y+z=xyz prove that (2x)/(1-x^(2))+(2y)/(1-y^(2))+(2z)/(1-z^(2))=(2x)/(1-x^(2))(2y)/(1-y^(2))(2z)/(1-z^(2))

If xy+yz+xz=1, then prove that (x)/(1-x^(2))+(y)/(1-y^(2))+(z)/(1-z^(2))=(4xyz)/((1-x^(2))(1-y^(2))(1-z^(2)))

ARIHANT PUBLICATION JHARKHAND-RATIONAL EXPRESSIONS-EXAM BOOSTER FOR CRACKING EXAM
  1. If A =(x+1)/(x-1) and B = (x-1)/(x+1), then A + B is:

    Text Solution

    |

  2. If R = (a^(3)+1)/(a-1) and S = (a^(2) - a+1)/(a+1), then R + S is:

    Text Solution

    |

  3. The expression to be added to (5x^(2) - 7x + 2) to produce (7x^(2) -1)...

    Text Solution

    |

  4. (x^(2) -x-2)/(2x^(2) +x-3) in lowest term is:

    Text Solution

    |

  5. The simplified form of (a+2)/(a+3) - (a+1)/(a+2) is:

    Text Solution

    |

  6. ((x+1)/(x^(2)-1) -2/x) expressed a rational expression is:

    Text Solution

    |

  7. The product of additive inverse of (x+6)/(x+2) and (5x+2)/(5x-3) is:

    Text Solution

    |

  8. Which rational expression should be added to (x^(3)-1)/(x^(2)+2) to ge...

    Text Solution

    |

  9. The value of: (1 + 1/(a+1))(1+1/(a+2)) (1+1/(a+3))(1+1/(a+4)) is

    Text Solution

    |

  10. The expression ((x-1)(x-2)(x^(2) - 9x + 14))/((x-7)(x^(2) - 3x + 2)) i...

    Text Solution

    |

  11. The value of (a-c)/((a-b)(x-a)) + (b-c)/((b-a)(x-b)) is:

    Text Solution

    |

  12. The sum of the rational expression (x-3)/(x^(2) +1) and its reciprocal...

    Text Solution

    |

  13. If A = 4x + 1/x, then the value of A + 1/A is:

    Text Solution

    |

  14. If x = b/(a-b) and y=a/(a+b), then the value of 1/x + 1/y is:

    Text Solution

    |

  15. The value of a/((a-b)(a-c)) + b/((b-c)(b-a)) + c/((c-a)(c-b)) is:

    Text Solution

    |

  16. If A =((x-1)/(x+1)) and B =((x+1)/(x-1)), then the value of (A+B)^(2)...

    Text Solution

    |

  17. The value of 1/((1-a)(1-b))+ a^(2)/((1-a)(b-a)) -b^(2)/((b-1)(a-b)) is...

    Text Solution

    |

  18. The value of ((x/y- y/x)(y/z -z/y) (z/x -x/z))/((1/x^(2) -1/y^(2))(1/y...

    Text Solution

    |

  19. If alpha, beta and gamma are the roots of the cubic equation (x-1)(x^(...

    Text Solution

    |

  20. When x^(5)-5x^(4)+9x^(3)-6x^(2)-16x+13 is divided by x^(2)-3x+a , then...

    Text Solution

    |