Home
Class 12
MATHS
Two pipes A and B can fill a tank in 36 ...

Two pipes A and B can fill a tank in 36 min and 45 min, respectively. A pipe 'C' can empty the tank in 30 min. If all the three pipes are opened simultaneously, then in how much time the tank will be completely filled?

A

6h

B

1 h

C

3 h

D

4 h

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of how long it will take to fill the tank when all three pipes A, B, and C are opened simultaneously, we will follow these steps: ### Step 1: Determine the filling rates of pipes A and B and the emptying rate of pipe C. - Pipe A fills the tank in 36 minutes, so its rate is \( \frac{1}{36} \) of the tank per minute. - Pipe B fills the tank in 45 minutes, so its rate is \( \frac{1}{45} \) of the tank per minute. - Pipe C empties the tank in 30 minutes, so its rate is \( \frac{1}{30} \) of the tank per minute (but we will consider it as negative since it is emptying). ### Step 2: Calculate the combined rate of filling when all pipes are open. The combined rate of filling the tank when all pipes are open is given by: \[ \text{Combined Rate} = \text{Rate of A} + \text{Rate of B} - \text{Rate of C} \] Substituting the rates we found: \[ \text{Combined Rate} = \frac{1}{36} + \frac{1}{45} - \frac{1}{30} \] ### Step 3: Find a common denominator to simplify the equation. The least common multiple (LCM) of 36, 45, and 30 is 180. We will convert each fraction to have a denominator of 180: - \( \frac{1}{36} = \frac{5}{180} \) - \( \frac{1}{45} = \frac{4}{180} \) - \( \frac{1}{30} = \frac{6}{180} \) Now substituting back into the combined rate: \[ \text{Combined Rate} = \frac{5}{180} + \frac{4}{180} - \frac{6}{180} = \frac{5 + 4 - 6}{180} = \frac{3}{180} \] ### Step 4: Simplify the combined rate. \[ \text{Combined Rate} = \frac{1}{60} \] This means that together, the pipes fill \( \frac{1}{60} \) of the tank in one minute. ### Step 5: Calculate the time to fill the entire tank. If the combined rate is \( \frac{1}{60} \) of the tank per minute, then the time taken to fill the entire tank is the reciprocal of the combined rate: \[ \text{Time} = \frac{1}{\text{Combined Rate}} = 60 \text{ minutes} \] ### Final Answer: The tank will be completely filled in **60 minutes**. ---
Promotional Banner

Topper's Solved these Questions

  • TIME AND WORK

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster for Cracking Exam |18 Videos
  • TIME AND DISTANCE

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster for Cracking Exam |25 Videos
  • TRIGNOMETRIC RATIOS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster for Cracking Exam|25 Videos

Similar Questions

Explore conceptually related problems

TWo pipes can fill a tank in 10 h and 16 h, respectively. A third pipe can empty the tank in 32 h. If all the three pipes function simultaneously, then in how much time (in h) the tank will be full?

Pipes A and B can fill a tank in 5 and 6 h, respectively. Pipe C can fill it in 30 h. If all the three pipes are opened together, then in how much time the tank will be filled in?

Two pipes can fill a tank in 10 hours and 12 hours respectively. While a third pipe empted the full tank in 20 hours. If all the three pipes operate simultaneously, in how much time the tank will be filled ?

A, B and C are three taps in a tank. Taps A and B can fill the tank independently in 20 min and 40 min, respectively. Tap C can empty the tank in 60 min. If all the three taps are opened together, how long will they take to fill the tank?

Pipe A and B can fill a water tank in 30 and 45 minutes respectively while pipe C can take out all the water is 60 minutes. If the three pipes are opened simultaneously . How long it fill the empty tank

ARIHANT PUBLICATION JHARKHAND-TIME AND WORK-Exam Booster for Cracking Exam
  1. Two pipes A and B can fill a tank in 36 min and 45 min, respectively. ...

    Text Solution

    |

  2. A can do a piece of work in 24 days. If B is 60% more efficient than A...

    Text Solution

    |

  3. A sum of money is sufficient to pay A's wages for 21 days and B's wage...

    Text Solution

    |

  4. A cistern which has a leak in the bottom is filled in 15 h. Had there ...

    Text Solution

    |

  5. 24 men can complete a job in 40 days. The number men required to compl...

    Text Solution

    |

  6. A can finish a work in 12 days and B can do it in 15 days. ’After A ha...

    Text Solution

    |

  7. If a work can be completed by A in 30 days and by B in 60 days. Then, ...

    Text Solution

    |

  8. If x men can do a work in z days. Then, the number of days taken by (x...

    Text Solution

    |

  9. A and B can complete a task in 30 days when working together after A a...

    Text Solution

    |

  10. 9 men finish one-third work in 10 days. The number of additional men r...

    Text Solution

    |

  11. Ravi alone does a piece of work in 2 days and Rajesh does it in 6 days...

    Text Solution

    |

  12. X can do 3/4 of a work in 12 days. In how many days X can finish the 1...

    Text Solution

    |

  13. Ravi can build a wall in the same time in which Mahesh and Suresh toge...

    Text Solution

    |

  14. Sita can do a work in 15 days and Gita can do it in 25 days and Meera ...

    Text Solution

    |

  15. 7 men and 8 boys can do a piece of work in 2 days. 4 men and 12 boys c...

    Text Solution

    |

  16. 2 men undertake to do a job for 1400. One can do it alone in 7 days an...

    Text Solution

    |

  17. A group of workers engaged in plastering a wall, completed half of the...

    Text Solution

    |

  18. A can do a piece of work in 9 days, B in 12 days and C in 15 days. The...

    Text Solution

    |

  19. A, B and C are three taps in a tank. Taps A and B can fill the tank in...

    Text Solution

    |