Home
Class 12
MATHS
The vertices of a DeltaABC has coordinat...

The vertices of a `DeltaABC` has coordinates `(costheta,sintheta),(sintheta,-costheta)` and (1,2). As `theta` varies the locus of centroid of the triangle is the circle

A

`x^(2)+y^(2)-2x-4y+1=0`

B

`3(x^(2)+y^(2))-2x-4y+1=0`

C

`x^(2)+y^(2)-2x-4y+3=0`

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To find the locus of the centroid of triangle ABC with vertices at \((\cos \theta, \sin \theta)\), \((\sin \theta, -\cos \theta)\), and \((1, 2)\) as \(\theta\) varies, we will follow these steps: ### Step 1: Find the Centroid of Triangle ABC The centroid \(G\) of a triangle with vertices \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\) is given by the formula: \[ G\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right) \] For our triangle ABC, the vertices are: - \(A(\cos \theta, \sin \theta)\) - \(B(\sin \theta, -\cos \theta)\) - \(C(1, 2)\) Thus, the coordinates of the centroid \(G\) are: \[ G\left(\frac{\cos \theta + \sin \theta + 1}{3}, \frac{\sin \theta - \cos \theta + 2}{3}\right) \] ### Step 2: Set the Centroid Coordinates Let the coordinates of the centroid be \((h, k)\): \[ h = \frac{\cos \theta + \sin \theta + 1}{3} \] \[ k = \frac{\sin \theta - \cos \theta + 2}{3} \] ### Step 3: Rearranging the Equations From the equations for \(h\) and \(k\), we can rearrange them: 1. From \(h\): \[ \cos \theta + \sin \theta = 3h - 1 \] 2. From \(k\): \[ \sin \theta - \cos \theta = 3k - 2 \] ### Step 4: Square and Add the Equations Now we will square both equations and add them: \[ (\cos \theta + \sin \theta)^2 + (\sin \theta - \cos \theta)^2 = (3h - 1)^2 + (3k - 2)^2 \] Expanding both sides: - Left Side: \[ \cos^2 \theta + 2\cos \theta \sin \theta + \sin^2 \theta + \sin^2 \theta - 2\cos \theta \sin \theta + \cos^2 \theta = 1 + 1 = 2 \] - Right Side: \[ (3h - 1)^2 + (3k - 2)^2 = 9h^2 - 6h + 1 + 9k^2 - 12k + 4 = 9h^2 + 9k^2 - 6h - 12k + 5 \] ### Step 5: Set the Equation Equating both sides gives: \[ 9h^2 + 9k^2 - 6h - 12k + 5 = 2 \] This simplifies to: \[ 9h^2 + 9k^2 - 6h - 12k + 3 = 0 \] ### Step 6: Replace \(h\) and \(k\) with \(x\) and \(y\) Let \(h = x\) and \(k = y\): \[ 9x^2 + 9y^2 - 6x - 12y + 3 = 0 \] ### Step 7: Simplify the Equation Dividing the entire equation by 3 gives: \[ 3x^2 + 3y^2 - 2x - 4y + 1 = 0 \] ### Step 8: Rearranging to Standard Form Rearranging gives us: \[ 3x^2 + 3y^2 - 2x - 4y + 1 = 0 \] This represents a circle in the coordinate plane. ### Final Result The locus of the centroid of triangle ABC as \(\theta\) varies is given by the equation: \[ 3x^2 + 3y^2 - 2x - 4y + 1 = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • RECTANGULAR COORDINATES, STRAIGHT LINES, FAMILY OF LINES

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster for Cracking Exam |30 Videos
  • RATIONAL EXPRESSIONS

    ARIHANT PUBLICATION JHARKHAND|Exercise EXAM BOOSTER FOR CRACKING EXAM |22 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster for Cracking Exam|25 Videos

Similar Questions

Explore conceptually related problems

If A = ((costheta,-sintheta),(sintheta,costheta)) then

Evaluate- |[costheta,sintheta],[sintheta,costheta]|

Evaluate : |{:(costheta,-sintheta),(sintheta,costheta):}|

If A=[(costheta,-sintheta),(sintheta,costheta)] " then " A^(-1) =?

if A= [{:(costheta,sintheta),(-sintheta,costheta):}], then A A^T =?

Evaluate costheta.costheta+sintheta.sintheta

If A=[[costheta, sintheta], [-sintheta, costheta]] , then

Let A=[{:(costheta,sintheta),(-sintheta,costheta):}] , then |2A| is equal to

Prove that : (1-costheta)/(sintheta)+(sintheta)/(1-costheta)=2"cosec "theta

If A=[[costheta, sintheta], [-sintheta, costheta]] , then |A^(-1)|=

ARIHANT PUBLICATION JHARKHAND-RECTANGULAR COORDINATES, STRAIGHT LINES, FAMILY OF LINES-Exam Booster for Cracking Exam
  1. The extremities of a diagonal of a parallelogram are the points (3, -4...

    Text Solution

    |

  2. If P(1, 2), Q(4, 6), R(6, 7) and S(a, b) are the vertices of a paralle...

    Text Solution

    |

  3. The vertices of a DeltaABC has coordinates (costheta,sintheta),(sinthe...

    Text Solution

    |

  4. ABC is an isosceles triangle. If the coordinates of the base are B(1,...

    Text Solution

    |

  5. The vertices of a DeltaABC are (lamda,2-,2lamda),(-lamda+1,2lamda) and...

    Text Solution

    |

  6. The area of a triangle is 5. Two of its vertices are A(2,1) and B(3...

    Text Solution

    |

  7. The coordinates of A, B, C, D are (6, 3), (-3, 5), (4, -2) and (x, 3x)...

    Text Solution

    |

  8. The points (-a, -b), (0, 0),(a, b) and (a^(2),ab) are

    Text Solution

    |

  9. If the points (2k, k), (k, 2k) and (k, k) with kgt0 enclose in a trian...

    Text Solution

    |

  10. Distance between the points A(acosalpha, "asin alpha) and B(acosbeta,"...

    Text Solution

    |

  11. The points (x, 2x), (2y, y) and (3, 3) are collinear

    Text Solution

    |

  12. A straight line L is perpendicular to the line 5x -y =1 . The area of ...

    Text Solution

    |

  13. If m(1) and m(2) are the roots of an equation x^(2)+(sqrt3+2)x+(sqrt3-...

    Text Solution

    |

  14. The equation of the base of an equilateral triangle is x+y = 2 and the...

    Text Solution

    |

  15. The distance between the lines 4x + 3y = 11 and 8x+6y=15 is

    Text Solution

    |

  16. A, B and C are the points (a, p), (b,q) and (c,r) respectively such th...

    Text Solution

    |

  17. The equations of perpendicular bisectors of the sides AB and AC of a D...

    Text Solution

    |

  18. A point P(h, k) lies on the straight line x + y +1 = 0 and is at a dis...

    Text Solution

    |

  19. The equations of the straight lines through (3, 2) which make acute an...

    Text Solution

    |

  20. The number of integral values of m, for which the x coordinate of the ...

    Text Solution

    |