Home
Class 12
MATHS
The vertices of a DeltaABC are (lamda,2-...

The vertices of a `DeltaABC` are `(lamda,2-,2lamda),(-lamda+1,2lamda)` and `(-4-lamda,6-2lamda)`. If its area be 70 units, then number of integral values of `lamda` is

A

1

B

2

C

4

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of integral values of \( \lambda \) for the triangle with vertices \( A(\lambda, 2 - 2\lambda) \), \( B(-\lambda + 1, 2\lambda) \), and \( C(-4 - \lambda, 6 - 2\lambda) \) such that its area is 70 units, we can use the formula for the area of a triangle given by its vertices in coordinate geometry. ### Step 1: Area Formula The area \( A \) of triangle formed by points \( (x_1, y_1) \), \( (x_2, y_2) \), and \( (x_3, y_3) \) is given by: \[ A = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] For our triangle, we have: - \( A(\lambda, 2 - 2\lambda) \) - \( B(-\lambda + 1, 2\lambda) \) - \( C(-4 - \lambda, 6 - 2\lambda) \) ### Step 2: Substitute the Coordinates Substituting the coordinates into the area formula: \[ A = \frac{1}{2} \left| \lambda(2\lambda - (6 - 2\lambda)) + (-\lambda + 1)((6 - 2\lambda) - (2 - 2\lambda)) + (-4 - \lambda)((2 - 2\lambda) - 2\lambda) \right| \] ### Step 3: Simplify the Expression Calculating each term: 1. The first term: \[ \lambda(2\lambda - 6 + 2\lambda) = \lambda(4\lambda - 6) = 4\lambda^2 - 6\lambda \] 2. The second term: \[ -\lambda + 1 \text{ gives } (6 - 2\lambda - 2 + 2\lambda) = 4 \implies (-\lambda + 1)(4) = -4\lambda + 4 \] 3. The third term: \[ -4 - \lambda \text{ gives } (2 - 2\lambda - 2\lambda) = -2\lambda \implies (-4 - \lambda)(-2\lambda) = 8\lambda + 2\lambda^2 \] Combining all terms: \[ A = \frac{1}{2} \left| (4\lambda^2 - 6\lambda) + (-4\lambda + 4) + (8\lambda + 2\lambda^2) \right| \] \[ = \frac{1}{2} \left| 6\lambda^2 + 2\lambda - 2 \right| \] ### Step 4: Set Area to 70 Setting the area equal to 70: \[ \frac{1}{2} \left| 6\lambda^2 + 2\lambda - 2 \right| = 70 \] \[ \left| 6\lambda^2 + 2\lambda - 2 \right| = 140 \] ### Step 5: Solve the Absolute Value Equation This gives us two cases: 1. \( 6\lambda^2 + 2\lambda - 2 = 140 \) 2. \( 6\lambda^2 + 2\lambda - 2 = -140 \) #### Case 1: \[ 6\lambda^2 + 2\lambda - 142 = 0 \] Using the quadratic formula: \[ \lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-2 \pm \sqrt{(2)^2 - 4 \cdot 6 \cdot (-142)}}{2 \cdot 6} \] \[ = \frac{-2 \pm \sqrt{4 + 3408}}{12} = \frac{-2 \pm \sqrt{3412}}{12} \] #### Case 2: \[ 6\lambda^2 + 2\lambda + 138 = 0 \] Using the quadratic formula: \[ \lambda = \frac{-2 \pm \sqrt{(2)^2 - 4 \cdot 6 \cdot 138}}{2 \cdot 6} \] \[ = \frac{-2 \pm \sqrt{4 - 3312}}{12} \text{ (which gives complex roots)} \] ### Step 6: Analyze Integral Values From Case 1, we need to find the integral values of \( \lambda \) from the roots obtained. The discriminant \( \sqrt{3412} \) is approximately 58.5, leading to two roots: \[ \lambda_1 = \frac{-2 + 58.5}{12} \approx 4.7 \quad \text{and} \quad \lambda_2 = \frac{-2 - 58.5}{12} \approx -5.0 \] The integral values of \( \lambda \) between these roots are \( -5, -4, -3, -2, -1, 0, 1, 2, 3, 4 \). ### Conclusion The total number of integral values of \( \lambda \) is **10**.
Promotional Banner

Topper's Solved these Questions

  • RECTANGULAR COORDINATES, STRAIGHT LINES, FAMILY OF LINES

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster for Cracking Exam |30 Videos
  • RATIONAL EXPRESSIONS

    ARIHANT PUBLICATION JHARKHAND|Exercise EXAM BOOSTER FOR CRACKING EXAM |22 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT PUBLICATION JHARKHAND|Exercise Exam Booster for Cracking Exam|25 Videos

Similar Questions

Explore conceptually related problems

If (1,5,35 ),( 7,5,5),( 1, lamda ,7) and ( 2 lamda ,1,2) are coplanar then the sum of all possible values of lamda is

The determinant Delta =|(lamda a , lamda^(2)+a^(2),1),(lamda b,lamda^(2)+b^(2),1),(lamdac,lamda^(2)+c^(2),1)| equals

If p lamda ^(4) + q lamda ^(3) + r lamda ^(2) + s lamda +t = |{:(lamda ^(2) + 3 lamda, lamda -1, lamda +3), ( lamda +1, 2 - lamda , lamda -4), ( lamda -3, lamda+4, 3lamda):}|. then the value of t is

Let plamda^(4)+qlamda^(3)+rlamda^(2)+slamda+t =|(lamda^(2)+3lamda,lamda-1,lamda-3),(lamda-1,-2lamda,lamda-4),(lamda-3,lamda+4,3lamda)| where p,q,r,s, and t are constant. Then value of t is

If |(-12,0,lamda),(0,2,-1),(2,1,15)| = -360 , then the value of lamda is

ARIHANT PUBLICATION JHARKHAND-RECTANGULAR COORDINATES, STRAIGHT LINES, FAMILY OF LINES-Exam Booster for Cracking Exam
  1. The vertices of a DeltaABC has coordinates (costheta,sintheta),(sinthe...

    Text Solution

    |

  2. ABC is an isosceles triangle. If the coordinates of the base are B(1,...

    Text Solution

    |

  3. The vertices of a DeltaABC are (lamda,2-,2lamda),(-lamda+1,2lamda) and...

    Text Solution

    |

  4. The area of a triangle is 5. Two of its vertices are A(2,1) and B(3...

    Text Solution

    |

  5. The coordinates of A, B, C, D are (6, 3), (-3, 5), (4, -2) and (x, 3x)...

    Text Solution

    |

  6. The points (-a, -b), (0, 0),(a, b) and (a^(2),ab) are

    Text Solution

    |

  7. If the points (2k, k), (k, 2k) and (k, k) with kgt0 enclose in a trian...

    Text Solution

    |

  8. Distance between the points A(acosalpha, "asin alpha) and B(acosbeta,"...

    Text Solution

    |

  9. The points (x, 2x), (2y, y) and (3, 3) are collinear

    Text Solution

    |

  10. A straight line L is perpendicular to the line 5x -y =1 . The area of ...

    Text Solution

    |

  11. If m(1) and m(2) are the roots of an equation x^(2)+(sqrt3+2)x+(sqrt3-...

    Text Solution

    |

  12. The equation of the base of an equilateral triangle is x+y = 2 and the...

    Text Solution

    |

  13. The distance between the lines 4x + 3y = 11 and 8x+6y=15 is

    Text Solution

    |

  14. A, B and C are the points (a, p), (b,q) and (c,r) respectively such th...

    Text Solution

    |

  15. The equations of perpendicular bisectors of the sides AB and AC of a D...

    Text Solution

    |

  16. A point P(h, k) lies on the straight line x + y +1 = 0 and is at a dis...

    Text Solution

    |

  17. The equations of the straight lines through (3, 2) which make acute an...

    Text Solution

    |

  18. The number of integral values of m, for which the x coordinate of the ...

    Text Solution

    |

  19. The equation of the straight line which makes angle of 15^(@) with the...

    Text Solution

    |

  20. The equation of straight line passing through the point of intersectio...

    Text Solution

    |