Home
Class 12
MATHS
If y^(x)+x^(y)=1, find (dy)/(dx)....

If `y^(x)+x^(y)=1`, find `(dy)/(dx)`.

Text Solution

Verified by Experts

The correct Answer is:
`-[(y^(x)logy+ yx^(v-1))/(x^(y)log x+xy^(x-1))]`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^y = y^x find (dy)/(dx)

If y = (sin x)^(log x) , find (dy)/(dx) .

Answer the following questions: If 2^x=3^y , then find (dy)/(dx) .

If y + siny = x^2 find (dy)/(dx) .

If y=x^(sin x) + (sinx)^(cos x) ,then find (dy)/(dx) .

Find the equation of the tangent to be curve y=f(x) at (x_(0),y_(0)) , if (dy)/(dx) does not exist at this point.

If y=sqrt(e^(sqrt(x)))", find "(dy)/(dx) .