Home
Class 12
MATHS
If y = (sin x)^(log x), find (dy)/(dx)....

If `y = (sin x)^(log x)`, find `(dy)/(dx)`.

Text Solution

Verified by Experts

The correct Answer is:
`(sinx)^(log)xx[(1)/(x)log(sin x)+logxx.cotxx]`
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x^(sin x) + (sinx)^(cos x) ,then find (dy)/(dx) .

If x^y = y^x find (dy)/(dx)

If y + siny = x^2 find (dy)/(dx) .

If y=sqrt(e^(sqrt(x)))", find "(dy)/(dx) .

If y^x + x^y = 1 , find (dy)/(dx) .

If y=log(x-2), xgt2, find (d^(2)y)/(dx^(2) .

If x=sin t, y=cos t , then find (d y)/(dx) .