Home
Class 12
MATHS
Differentiate tan^(-1)[(sqrt(1+x^(2))+...

Differentiate
`tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))]w.r.t.cos^(-1)x^(2)`.

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=(pi)/(4)+(1)/(2) cos^(-1)x^(2) .

If "tan"^(-1) (sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))=alpha , then prove that x^(2) =sin 2alpha .

If y=tan^-1frac{sqrt(1+x^2)+sqrt(1-x^2)}{sqrt(1+x^2)-sqrt(1-x^2)] , show that x^2=sin 2y

Differentiate cos sqrt(x)w.r.t.x.