Home
Class 14
MATHS
If x = 2 -sqrt(3) then the value of x^(...

If `x = 2 -sqrt(3)` then the value of `x^(3)-x^(-3)` is :

A

`-30 sqrt(3)`

B

`30 sqrt(3)`

C

`-30 sqrt(2)`

D

`30 sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^3 - x^{-3} \) given \( x = 2 - \sqrt{3} \). ### Step-by-Step Solution: 1. **Find \( x^{-1} \)**: \[ x^{-1} = \frac{1}{x} = \frac{1}{2 - \sqrt{3}} \] To rationalize the denominator, multiply the numerator and denominator by the conjugate: \[ x^{-1} = \frac{1 \cdot (2 + \sqrt{3})}{(2 - \sqrt{3})(2 + \sqrt{3})} = \frac{2 + \sqrt{3}}{4 - 3} = 2 + \sqrt{3} \] 2. **Calculate \( x - x^{-1} \)**: \[ x - x^{-1} = (2 - \sqrt{3}) - (2 + \sqrt{3}) = 2 - \sqrt{3} - 2 - \sqrt{3} = -2\sqrt{3} \] 3. **Let \( a = x - x^{-1} \)**: \[ a = -2\sqrt{3} \] 4. **Use the identity for \( x^3 - x^{-3} \)**: The formula for \( x^3 - x^{-3} \) in terms of \( a \) is: \[ x^3 - x^{-3} = (x - x^{-1})^3 + 3(x - x^{-1}) \] Substituting \( a \): \[ x^3 - x^{-3} = a^3 + 3a \] 5. **Calculate \( a^3 \)**: \[ a^3 = (-2\sqrt{3})^3 = -8 \cdot 3\sqrt{3} = -24\sqrt{3} \] 6. **Calculate \( 3a \)**: \[ 3a = 3 \cdot (-2\sqrt{3}) = -6\sqrt{3} \] 7. **Combine the results**: \[ x^3 - x^{-3} = -24\sqrt{3} - 6\sqrt{3} = -30\sqrt{3} \] ### Final Answer: \[ x^3 - x^{-3} = -30\sqrt{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=2+sqrt(3), find the value of x^(3)+(1)/(x^(3))

If x=2+sqrt(3), find the value of x^(3)+(1)/(x^(3))

If x = 2 + sqrt(3) and y = 2 - sqrt(3) , find the value of x^(-3) + y^(-3) .

If x=2-sqrt3 then the value of x^3-x^-3 is: यदि x=2-sqrt3 है, तो x^3-x^-3 का मान क्या होगा ?